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Abstract

The dynamic nature of the world is integral to human perception, underscoring the importance of the temporal

dimension. Many phenomena, ranging from simple locomotion to complex interpersonal interactions, only

fully reveal their meaning when observed over time. This temporal perspective is crucial in computer vision,

particularly in tasks such as action recognition, where the estimation of optical flow—how objects move

across a sequence of images—plays a pivotal role. Furthermore, the principles of image understanding,

traditionally focused on static imagery, provide a foundational framework that can inform and enhance video

analysis. By adapting insights gained from static contexts, we can approach the complexity of video with

strategies for capturing motion.

This thesis explores the considerable advancements in motion-guided action recognition and video under-

standing within the field of computer vision, facilitated by the integration of machine learning and deep

learning technologies. It focuses specifically on the temporal aspects that distinguish video from static image

analysis, where optical flow is often a key descriptor in capturing motion dynamics.

We discuss the evolution of machine learning in the broader domain of image and video understanding,

detailing the design decisions and trade-offs of successful architectures and the various techniques employed

to optimize their functionality. Through this exploration, we aim to provide a deeper understanding of how

contemporary video analysis techniques can be applied effectively.

A particular case study in our research is dedicated to action recognition based entirely on motion information,

deliberately excluding static cues to avoid biases and enhance system accuracy. We show through a

psychophysical study that humans are more adapt at recognizing motion with very limited information, and

propose an explicit correlation block to model optical flow directly within the network. Moreover, we use our

gained insights to introduce an innovative approach to privacy-preserving action recognition. This approach

is particularly relevant given the growing concerns over surveillance and privacy in digital environments.





Kurzfassung

Die dynamische Natur der Welt ist ein wesentlicher Bestandteil der menschlichen Wahrnehmung. Viele

Aktionen und Gesten, von der einfachen Fortbewegung bis hin zu komplexen zwischenmenschlichen

Interaktionen, offenbaren ihre Bedeutung erst dann vollständig, wenn sie über die Zeit beobachtet werden.

Diese zeitliche Perspektive ist in der Computer Vision von entscheidender Bedeutung. Dies ist besonders

offensichtlich bei Action Recognition - dem Erkennen von menschlichen Aktivitäten. Dabei wird oft unter,

zuhilfenahme des optischen Flusses, welcher die Bewegeung von Objekten in Bildfolgen beschreibt, eine

Repräsentation der Dynamik in der Szene geschaffen. Darüber hinaus bieten die Bausteine des Bild- und

Videoverstehens, die sich historisch bedingt mehr mit statischen Bildern beschäftigen, einen grundlegenden

Rahmen, der die Videoanalyse vorantreiben kann. Erkenntnissen die aus der Bildanalyse kommen, weisen

uns in gewisser Maßen den Weg und verdeutlichen welche Strategien und Verfahren in der Videoanalyse

verwendung finden können.

In dieser Arbeit untersuchen wir die beträchtlichen Fortschritte der Action Recognition aus Videos. Viele

der Verbesserungen in der Videoerkennung wurden erst in den letzten Jahren durch Deep Learning

und Machine Learning Ansätze ermöglicht. Diese Verbesserungen konzentriert sich insbesondere auf die

zeitlichen Aspekte, die Videos von der Analyse von statischen Bildern unterscheiden. Wir erörtern die

Entwicklung des maschinellen Lernens im breiteren Bereich des Bild- und Videoverstehens, wobei wir die

Designentscheidungen und Kompromisse erfolgreicher Deep Learning Architekturen und die verschiedenen

Techniken zur Optimierung ihrer Funktionalität detailliert beschreiben. Mit dieser Analyse wollen wir ein

tieferes Verständnis dafür vermitteln, wie moderne Bild- und Videoalgorithmen effektiv eingesetzt werden

können.

Eine besondere Fallstudie in unserer Forschung ist der Action Recognition gewidmet, die ausschließlich

auf Bewegungsinformationen basiert. Dabei werden statische Videoelemente bewusst mit einem Rauschen

versehen, die es uns erlaubt Bewegungen ausschließlich entkoppelt von Textur, Kontur, und Gestalt zu

sehen. Wir zeigen anhand einer User-Study, dass Menschen ebendiese Bewegungen besser als herkömmliche

neuronale Netzwerke erkennen können, und schlagen einen expliziten Korrelationsblock vor, um den

optischen Fluss direkt im Netzwerk zu modellieren. Darüber hinaus nutzen wir diese Erkenntnisse, um

einen Ansatz zur Action Recognition unter der Wahrung der Privatsphäre, im besondereren bezogen auf

einzelne Attribute die nicht für Action Recognition relevant sind, vorzustellen. Dieser Ansatz ist angesichts

der zunehmenden Realität der permanenten Überwachung und der abnehmenden Privatsphäre in digitalen

Umgebungen besonders wichtig.





Affidavit I declare that I have authored this thesis independently, that I have not used other than the declared sources /
resources, and that I have explicitly marked all material which has been quoted either literally or by content from the
used sources. I agree to the electronic publication of this thesis by the University Library.

Date Filip Ilic





Contents

Preface v

Abstract vii

Kurzfassung ix

Contents xiii

Background 1

1 Introduction 3
1.1 Image and Video Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Taxonomy of Related Computer Vision Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 9
2.1 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Definitions & Core Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Feed Forward Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Convolutional Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Interpretation and Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Activation Maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Optical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Classical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Learning Based Methods for Optical Flow Estimation . . . . . . . . . . . . . . . . . . . . . . 41

Video Understanding 43

3 Deep Learning 47
3.1 Deep Learning for Video Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Timeline of Video Action Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Regularization Strategies for Deep Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Deep Convolution Neural Networks (CNN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Representation Learning and Training Schemes . . . . . . . . . . . . . . . . . . . . . . . . . 77

Self-Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



4 The Importance of Motion for Action Recognition 83
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Appearance free dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Dataset generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Appearance in optical flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A dataset subset for exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Psychophysical study: Human performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Experiment design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Human results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Computational study: Model performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Training procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Training details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Model results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5 Two-stream strikes back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Design of a novel network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Empirical evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Privacy Attribute Obfuscation for Action Recognition 95
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Technical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Template library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Matching: Local patch descriptor templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Temporally consistent obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Empirical evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Spatio-temporal Clustering for Object and Part Segmentation 107
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Space-Time Volumes of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Backbone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Experiments & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Video Object Segmentation - Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Video Object Segmentation - Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Object Parts - Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



Outlook 119

7 Outlook 123
7.1 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2 Directions for Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Appendix 125

A Appendix 127
A.1 Appendix to Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Additional Plots of Decision Boundaries in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.2 Appendix to Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Additional Behavioural Results of Appearance Free Action Videos . . . . . . . . . . . . . . 129

A.3 Appendix to Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Additional training details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Additional empirical evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

First Authorships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Co-Authorships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.5 Code Repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Is Appearance Free Action Recognition Possible? . . . . . . . . . . . . . . . . . . . . . . . . 136

Selective, Interpretable, and Motion Consistent Privacy Attribute Obfuscation for Action

Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Representing Objects in Video as Space-Time Volumes by Combining Top-Down and Bottom-

Up Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Bibliography 137





List of Figures

1.1 Image classification from the perspective of the early 2010s . . . . . . . . . . . . . . . . . . . . . 3

1.2 Image Classification: Samples from ImageNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Semantic Segmentation: Samples from MS-COCO . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Object Detection: Samples from MS-COCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Action Recognition Dataset Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Transformation Matrices in ℝ2
and ℝ3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 𝑝-norms in ℝ2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 The Curse of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Fitting Data with Linear Models with Polynomial Basis . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Feed Forward Neural Network with one Hidden Layer . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Common Activation Functions and their Derivative . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 Visualization of individual neuron activations in a feed forward neural network . . . . . . . . . 15

2.9 Effect of different activation functions on neuron activations in a feed-forward neural network . 16

2.10 Universal Approximation Theorem: A Feed Forward Neural Network with 𝑛 hidden Units . . . 17

2.11 Poor approximation of a 1D function by a neural network in unobserved regions . . . . . . . . 17

2.12 Loss functions for different prediction errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.13 Stationary Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.14 Backpropagation: Computing the gradient efficiently . . . . . . . . . . . . . . . . . . . . . . . . 20

2.15 Computational graph of a simple function, and the code that uses automatic differentiation to

compute the gradients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.17 Model Selection Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.16 Model Complexity and its impact on Data Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.18 A 2D classification example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.19 Sigmoid / SoftMax as squashing the logit output into a probability distribution . . . . . . . . . 24

2.20 The Progression of the Decision Boundaries during Training . . . . . . . . . . . . . . . . . . . . 25

2.21 2D Convolution as it is used in Convolutional Neural Networks . . . . . . . . . . . . . . . . . . 27

2.22 Maximum and Average Pooling as Building blocks in Convolutional Neural Networks . . . . . 27

2.23 Convolutional Weights vs Fully Connected Weights . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.24 Strided Convolutions as a means to reduce output size . . . . . . . . . . . . . . . . . . . . . . . 28

2.25 Dilation in Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.26 Schematic of the LeNet-5 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.27 Schematic of the VGG16 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.28 Coordinate Convolution: adding spatial bias in CNNs . . . . . . . . . . . . . . . . . . . . . . . . 31

2.29 The MNIST dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.30 The Manifold Hypothesis: Data embedded in a lower dimensional space . . . . . . . . . . . . . 32

2.31 Weights of a linear classifier trained on MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.32 Activation Maximization on output neurons (classification) . . . . . . . . . . . . . . . . . . . . 35

2.33 Adversarial Examples created with Activation Maximization . . . . . . . . . . . . . . . . . . . . 36

2.34 Optical Flow Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.35 Optical Flow as a Vector field and the corresponding Middlebury coding . . . . . . . . . . . . . 37

2.36 The Aperture Problem in Optical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.37 Optical Flow estimates of Variational Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.38 Image Pyramids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.39 Forward and Backward warping of Optical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.40 The FlowNet Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



2.41 Coarse-to-Fine Feature Pyramid for Optical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.42 All Pair correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.43 The RAFT Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.44 Improvement of Optical Flow of FlowNet, PWC-Net, and RAFT . . . . . . . . . . . . . . . . . . 44

3.1 Timeline of Significant Model in Video Understanding and more specifically Action Recognition 48

3.2 Size of Popular Action Recognition Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Number of Classes in Popular Action Recognition Datasets . . . . . . . . . . . . . . . . . . . . . 50

3.4 Samples from popular Action Recognition Datasets used for Video Understanding . . . . . . . 51

3.5 Residual Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Dropout Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.7 Normalization Layers in Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.8 Data Augmentation to increase model robustness . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.9 Residual Connections in Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . 56

3.10 Visualization of the First Convolutional Layer Kernels in a ResNet-101 . . . . . . . . . . . . . . . 56

3.11 Activation Maximization on Convolutional Layers in a ResNet-101 . . . . . . . . . . . . . . . . . 59

3.12 The Inception Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.13 Convolutions for Spatio-temporal data; 2D, 3D, 2D+1D Convolutions . . . . . . . . . . . . . . . 60

3.14 Architecture of a Two-Stream Convolutional Neural Network (2D Convolutions) . . . . . . . . 60

3.15 The SlowFast Two-Stream Architecture without Explicit Optical Flow Computation . . . . . . . 61

3.16 Activation Maximization for Convolutional Layers in a I3D Network . . . . . . . . . . . . . . . 61

3.17 The receptive field of a CNN vs Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.18 Proportional (Database) Retrieval and its relation to Transformers . . . . . . . . . . . . . . . . . 63

3.19 Building Blocks of the Transformer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.20 Token ordering in a Vision Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.21 Self- and Cross-Attention as Matrix Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.22 Positional Embeddings in the Context of Vision Transformers . . . . . . . . . . . . . . . . . . . 67

3.23 The Vision Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.24 Attention of the Vision Transformer with respect to the [CLS] Token . . . . . . . . . . . . . . . 69

3.25 Average Attention Distance to other Tokens in the Vision Transformer . . . . . . . . . . . . . . 70

3.26 The Linear Projection Layer applied to Image Tokens in the Vision Transformer . . . . . . . . . 71

3.27 Learned and Fixed Positional Embeddings in a Vision Transformer . . . . . . . . . . . . . . . . 72

3.28 Decomposition of the Self-similarity matrix of positional encodings . . . . . . . . . . . . . . . . 72

3.29 Low-rank approximation of Self-Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.30 The Swin Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.31 Extension of Swin to windowed spatio-temporal attention . . . . . . . . . . . . . . . . . . . . . 74

3.32 Illustration of different tokenization functions for extending the Vision Transformer to video data 75

3.33 Extension of the ViT to Video as ViViT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.34 TSNE Clustering of Videos in feature space of Vision Transformers . . . . . . . . . . . . . . . . 76

3.35 Contrastive Learning for Robust Feature Representations . . . . . . . . . . . . . . . . . . . . . . 77

3.36 DINO: A self-supervised self-distillation method for robust Representation Learning . . . . . . 78

3.37 PCA clustered Ks of ViT Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.38 Examples of DINO vs Self-supervised Vision Transformer Heads . . . . . . . . . . . . . . . . . 81

4.1 Apperance Free Dataset for Action Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Creation of Appearance Free Videos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 ResNet50 Action Recognition performance on single frames . . . . . . . . . . . . . . . . . . . . 87

4.4 Single Frame Action Recognition performance after finetuning . . . . . . . . . . . . . . . . . . . 88

4.5 Psychopysical study results on AFD data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.6 E2S-X3D architecture for action recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



5.1 Overview of our proposed Privacy Preservation Method . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Schematic of the stages of the proposed Privacy Preservation Pipeline . . . . . . . . . . . . . . 98

5.3 The Template Library for Privacy Preserving Action Recognition . . . . . . . . . . . . . . . . . 99

5.4 Examples of Saliency Maps for Descriptors in the Template Library . . . . . . . . . . . . . . . . 99

5.5 Obfuscation with a Single Attribute from the Template Library and the Impact on Action

Recognition Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.6 Optical flow from two consecutive frames from competing approaches for Privacy Preservation 103

5.7 The Trade-off Between Action Recognition and Privacy Preservation for SoTA Methods . . . . . 105

5.8 Temporally Consistent vs 𝑖𝑖𝑑 Obfuscation for Action Recognition and Privacy Preservation . . 105

6.1 Processed Video Sequence with our Spatio-temporal clustering algorithm . . . . . . . . . . . . 108

6.2 Space-Time Volumes of Interest extracted at varying spatio-temporal scales . . . . . . . . . . . 108

6.3 Pipeline of extracting Space-Time Volumes of Interest from Video . . . . . . . . . . . . . . . . . 110

6.4 The Tube Selection Process to extract Semantically meaningfully Regions . . . . . . . . . . . . . 112

6.5 Spatio-temporal patterns of STVIs extracted from Video . . . . . . . . . . . . . . . . . . . . . . 113

6.6 Object- vs Viewer-centered coordinates of STVIs . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.7 Ablation over Parameters for the extraction of STVIs . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.8 Samples of the additional Segmentation labels for DAVIS . . . . . . . . . . . . . . . . . . . . . . 117

6.9 Qualitative Comparison of STVIs with different parameters . . . . . . . . . . . . . . . . . . . . 117

6.10 Qualitative comparison of competing spatio-temporal cluster algorithms . . . . . . . . . . . . . 118

6.11 Object Part Ablation Results for STVIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.1 Comparing a 2D and 3D visualization of the decision boundaries . . . . . . . . . . . . . . . . . 128

A.2 Decision Boundary in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.3 Additional results of the user study on AFD videos. . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.4 Template questionnaire that was filled out by every participant. . . . . . . . . . . . . . . . . . . 131

A.5 Qualitative Examples of Naive Baseline Obfuscation Methods . . . . . . . . . . . . . . . . . . . 132

A.6 Mean Average Error Between the Average Template Saliency for Each Dataset . . . . . . . . . . 133

List of Tables

3.1 Popular ResNet Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Top-1 accuracy of action recognition architectures on AFD . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Performance of X3D architecture configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 Top-1 Accuracy for all Privacy and Action models on unobfuscated videos . . . . . . . . . . . . 102

5.2 Privacy Preserving Action Recognition: Comparison of SoTA Methods . . . . . . . . . . . . . . . 104

6.1 Spatio-temporal Segmentation Results of our Method vs other SoTA approaches . . . . . . . . . 114

6.2 Results Table of Spatio-temporal Segmentation Methods . . . . . . . . . . . . . . . . . . . . . . 115

6.3 Baseline Results of other methods on the additional DAVIS annotations . . . . . . . . . . . . . . 116

6.4 Table Highlighting Unique Benefits of Individual Spatio-Temporal Clustering Algorithms . . . 118





Background





Introduction 1
Contents

1.1 Image and Video Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Taxonomy of Related Computer Vision Tasks . . . . . . . . . . . . . . . . . . . . . 4

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Image and Video Understanding

Motivation

Given the vast array of problems that can be solved with the human visual system, it is no surprise that

automation in this regard is and has been a widely studied field for many years. As such, Computer Vision

aims to develop algorithms that can automatically extract information from images which enable tasks such

as object recognition, image segmentation, and many more. The increase of computational power and the

availability of large datasets on the internet have led to significant advancements in the field. A rather recent

paradigm shift that can be pinpointed to the early 2010’s is the rise of neural networks, and in particular

deep learning techniques that leverage the amount of available data very successfully. Many tasks that

were once considered to require general intelligence and problem-solving capabilities, or deemed virtually
impossible, through the lens of the early 2010s (Fig. 1.1), have now been made possible with deep learning

[1–3]. These changes affected more than just the computer vision community and shaped all manners of

research including natural language processing, robotics, bio-chemistry, and material sciences.

Figure 1.1: Published in September 2014. The comic

depicts how it is sometimes difficult to understand

from a layperson’s perspective what easy and hard

problems in computer science are. In this particular

case it describes the task of detecting a bird in the

image as Virtually Impossible. The real punchline of the

comic however - winding up over last decade - is that

detecting birds in images, i.e. image classification is

reasonably advanced; solved with learning algorithms.

Image classification is in a state that is mature enough

to be present in our daily lives, working with great

accuracy and efficacy showing the rapid progress in

computer vision. Image taken from [4].
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Figure 1.2: Image Classification: Samples from ImageNet [8]. This figure presents a selection of images from the first truly large scale

Image dataset containing more than three Million samples with more than 5000 classes. Each image shown represents a different classes

such as animals, objects, and scenes. These examples demonstrate the diversity and complexity of images used in training machine

learning models for accurate image classification.

Taxonomy of Related Computer Vision Tasks

The subsequent paragraphs explore various aspects of computer vision that are pertinent to broader image

and video analysis. This overview serves as a concise taxonomy of different tasks within the field and their

applications.

Image Classification Image classification - Fig. 1.2 - is one of the foundational tasks in computer vision,

where the goal is to categorize what is depicted in images into predefined classes. Machine learning models,

particularly convolutional neural networks (CNNs), have shown remarkable success in this area by learning

to identify patterns and features that distinguish different categories [5–7]. Image classification is the basis

for more complex tasks like object detection and segmentation. Applications of image classification are

vast, ranging from identifying spam images in email filters to diagnosing diseases from medical scans. For

example, in social media platforms, image classification algorithms help filter and categorize content, while in

medical diagnostics, they assist in classifying images of skin lesions as benign or malignant. The continuous

development of more sophisticated models and training techniques has significantly increased the accuracy

and reliability of such systems.

Semantic Segmentation Semantic segmentation - Fig. 1.3 - classifies each pixel in an image into predefined

categories, providing a detailed and comprehensive understanding of the scene [9–11]. This pixel-level

precision is vital for applications requiring a granular interpretation of images. In medical imaging, for

example, semantic segmentation is used to delineate anatomical structures, tumors, or other pathological

regions, aiding in accurate diagnosis and treatment planning. Autonomous vehicles rely on semantic

segmentation to distinguish between different parts of the environment, such as roads, sidewalks, vehicles,

and pedestrians, ensuring safe navigation and decision-making.

Object Detection Object detection in visual computing applications involves the identification and,

potentially, the localization of objects within an image. This task goes beyond merely recognizing what objects

are present; it determines their precise positions within the frame and serves as a basis for many vision tasks

that require interaction with the world [13–18]. Modern machine learning algorithms have excelled in this area

due to their ability to learn hierarchical feature representations from large datasets. In autonomous driving,

for instance, object detection is crucial for identifying pedestrians, other vehicles, traffic signs, and obstacles,

allowing the vehicle to navigate safely. Surveillance systems utilize object detection to monitor and detect



1.1 Image and Video Understanding 5

Figure 1.3: Semantic Segmentation: Samples from MS-COCO [12] with corresponding Segmentation Maps. This figure illustrates the

concept of image segmentation by displaying a selection of images alongside their segmentation maps. Each image from diverse

scenes—such as a festive gathering, a casual indoor activity, and a serene outdoor setting—is paired with its color-coded map that

assigns a class label to every pixel in the image. These examples highlight how image segmentation is used to identify and separate

various components of an image, useful for tasks such as autonomous driving.

suspicious activities by identifying potential threats. The precision and speed of modern object detection

models are continually improving, making them indispensable in these and many other applications that are

already in use.

Object Tracking Building upon object detection, object tracking involves the continuous monitoring of

identified objects across a sequence of frames in a video. This task is essential for applications requiring an

understanding of the movement and interaction of objects over time [20–22]. Advanced techniques have

been developed to maintain high accuracy and robustness even in complex and dynamic environments.

For example, in video surveillance, tracking a suspect through a crowded area requires algorithms that

can handle occlusions, changes in appearance, and varying lighting conditions. In sports analytics, object

tracking can analyze player movements, strategies, and performance over the course of a game. Furthermore,

in wildlife monitoring, tracking animals helps in studying their behavior and migration patterns. Object

tracking, thus, plays a critical role in scenarios where continuous and precise monitoring of moving objects is

required.

Action Localization Action localization aims to identify when and where specific actions occur within a

video. This task is particularly challenging due to the need to analyze both spatial and temporal information

to understand the context and sequence of actions [23–25]. Machine learning models trained for action

localization are crucial in sports analytics, where identifying and analyzing player movements and key

actions are critical. For instance, action localization can automatically generate highlight reels by pinpointing

significant moments in sports footage. In security applications, action localization can detect and alert

to suspicious behaviors, such as a person leaving a bag unattended in a public place. Additionally, in

human-computer interaction, action localization enables more natural and intuitive interfaces by recognizing

user actions and gestures.

Action Recognition While action localization focuses on identifying the temporal and spatial aspects of

actions, action recognition, Fig. 1.5, aims to classify the type of action being performed [26–29]. This task is

critical in various applications, from video content analysis and human-computer interaction to security and
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Figure 1.4: Object Detection: Samples from MS-COCO [12] showing the ground truth object segmentation masks for all objects in

the scene. While early datasets contained bounding boxes around objects of interest, dataset annotations continued to improve as

to minimize the noise that is present in the ground truth. The output of current State-of-the-Art segmentation approaches such as

Segment-Anything [19] can come very close to the ground truth annotations and is used for many downstream tasks.

Boxing

Table Tennis

Figure 1.5: Action Recognition: Samples from the UCF101 Dataset [30]. Action Recognition is analogous to Image Classification where a

single label is assigned to the input video. By analyzing the spatial and temporal information an action can be deduced. This is crucial for

enhancing automated surveillance, video retrieval and search, as well as improving other tasks that depend on the temporal component.

behavior monitoring. For example, in elder care facilities, action recognition systems can monitor residents to

detect falls or other emergencies, enabling prompt intervention. In video content analysis, action recognition

helps in categorizing and searching large video archives based on specific actions. The field continues to

evolve with the integration of multi-modal data, such as combining visual and audio inputs, to enhance

recognition performance.
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1.2 Outline

The structure of this thesis begins with an introduction to machine learning and its fundamental concepts in

Chapter 2. This foundation supports the subsequent exploration of deep learning architectures. Chapter 2 also

addresses strategies for visualizing learned representations and discusses enduring concepts in the rapidly

evolving field of deep learning. Chapter 3 discusses some of architectures, emphasizing the importance

of understanding broader concepts that go beyond simple architectural choices within these networks.

This discussion is then extended to focus to include the temporal dimensions that lead to the principal

contributions of this work. Chapters 4, 5, and 6 explore specific challenges within the video understanding

field, and their solutions. These chapters represent the core technical contributions of the thesis, with the

final Chapter 7 summarizing the work and providing an outlook.

Contributions

The primary contribution of this thesis is exploring the role of motion information in video understanding

and its impact on action recognition, through three different application. To allow for a better understanding

of the various contributions, the preliminary chapter of this thesis - Chapter 2 - introduces core concepts

related to video understanding that are used throughout the thesis. A synopsis of each primary contribution

is, as follows:

▶ An in-depth analysis of the challenges associated with deep learning, and concepts that pertain to

action recognition and video understanding in particular.

▶ A method to obfuscate arbitrary videos, probing the capabilities of neural networks to model and

discern motion information in videos.

▶ An application of the aforementioned obfuscation method to create videos which can hide arbitrary

privacy relevant attributes in videos, while maintaining the action recognition capabilities of most

models.

▶ A novel method for spatio-temporal clustering based on low-level image features and optical flow,

shown to be effective in identifying individual object parts and their movements in videos.
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2.1 Mathematical Preliminaries

This chapter will serve to define required mathematical notation, and introduce core concepts that are

important in the context of Machine Learning. We will start with a brief overview of Linear Models, their

shortcomings, their strengths and conclude with the introduction of a small Neural Network to solve a simple

classification task. The goal of this chapter is to lay the foundation and vocabulary required to understand the

chapters that follow, that deal in depth with Deep Learning, different types of Neural Network Architectures,

and in particular their applications in Computer Vision and Video Understanding.

Definitions & Core Concepts

Vectors are defined as a one-dimensional array of numbers, with the (scalar) elements of the vector denoted

as 𝑥𝑖 . We will denote vectors as bold lowercase letters x.

x =


𝑥1

𝑥2

...

𝑥𝑛


, 𝑥𝑖 ∈ ℝ (2.1)

It is often required to compute the similarity between two vectors or to project one vector onto another. All of

these operations can be expressed in terms of the inner product (often also referred to as dot product) of two

vectors; this operation is defined as the sum of the element-wise product of the two vectors.

⟨x, y⟩ =
𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖 (2.2)

It is useful to consider the meaning of the inner product in terms of the angle between two vectors, which

leads to another often used similarity measure between two vectors: the cosine similarity.

cos(𝜃) = ⟨x, y⟩
∥x∥∥y∥ (2.3)
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Transformations in ℝ2

𝑖

𝑗

[
1 0

0 1

]
𝑖

𝑗

[
1 0

−0.5 1

]
𝑖

𝑗

[
1 −1

1 −1

]

Transformations in ℝ3

𝑖

𝑗

𝑘

[
1 0 0

0 1 0

0 0 1

]
𝑥

𝑦

𝑧

(a) Identity

𝑖

𝑗𝑘

[
1 −1 0

1 1 0.3
0 0 1

]
𝑥

𝑦

𝑧

(b) Full-Rank Matrix

𝑖 𝑗

𝑘

[
0 0 0

0.4 1.5 0

1 0.5 0

]
𝑥

𝑦

𝑧

(c) Singular Matrix

Figure 2.2: Visualization of transformation matrices in ℝ2
and ℝ3

. The colored vectors represent the basis vectors of the coordinate

system, whereas the green parallelogram / parallelepiped represents the transformation of the unit cube, from which the rank and

determinant can be inferred. In low dimensions, such as shown here, the rank and determinant can be easily visualized. However, in

higher dimensions this becomes increasingly difficult.

Practically, the cosine similarity is often used to compare the similarity of two vectors, as it is invariant to the

magnitude of the vectors and only depends on the angle between them. Common norms to measure the

length of a vector are the 𝐿1 and 𝐿2 norm. They, in turn, are part of the family of 𝐿𝑝 norms (Fig. 2.3) which

are defined as

∥x∥𝑝 =
(
𝑛∑
𝑖=1

|𝑥𝑖 |𝑝
)

1/𝑝

, 𝑝 ≥ 1. (2.4)

Oftentimes we will encounter the 𝐿1 and 𝐿2 norm particularly in the context of machine learning, either

as regularization terms, or as a measure of the error of a model. In other fields of mathematics, such as

functional analysis and optimization other norms play a more important role [31].

Another essential entity are tensors of any dimensionality. Tensors are multi-dimensional arrays of numbers,

with the elements of the tensor denoted by subscripts 𝑥𝑖 ,...,𝑛 . Sometimes it is useful to think of a tensor in

terms of its components in its column space, i.e. its basis vectors, which are the vectors that span it. Sometimes,

however, the notion of a tensor as a container to store numbers is more useful, as in the case with tensors

containing image and video data, where there is no meaningful interpretation of the column- or row-space.

We will denote tensors as bold uppercase letters T.

T =


𝑥1,1 · · · 𝑥1,𝑚

...
. . .

...

𝑥𝑛,1 · · · 𝑥𝑛,𝑚

 , T ∈ ℝ𝑛×𝑚
(2.5)

A property that all tensors share is that they are linear operators, mapping between two vector spaces that

satisfy two key properties of Additivity and Homogeneity:

𝑓 (x + y) = 𝑓 (x) + 𝑓 (y) (Additivity)

𝑓 (𝛼x) = 𝛼 𝑓 (x). (Homogeneity)

Common operations such as +,−,×, do not require additional explanation with the exception of the
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𝑝 = 0 𝑝 = 1

2
𝑝 = 1 𝑝 = 2 𝑝 = ∞

Figure 2.3: The 𝑝-norms of a vector 𝑥 ∈ ℝ2
for different values of 𝑝. The red curve represents the unit circle in each norm. Note that only

𝑝 ≥ 1 are actual norms, whereas 𝑝 < 1 are commonly refered to as pseudo-norms.

ℝ1 ℝ2 ℝ3

Figure 2.4: The curse of dimensionality. The addition of each dimension increases the volume of the space exponentially. This figure

shows the volume of a unit hypercube in ℝ1
, ℝ2

, and ℝ3
. Consider the implications of the curse of dimensionality for image data: Each

an image of medium resolution (e.g. 256 × 256 × 3 ) can be thought of living in a ≈ 200, 000 dimensional space. This means that unless

the dataset is very large the space will not be densely populated. Furthermore, an argument can be made that natural images do not

indeed need to populate the entire space, but can rather live in a subspace or a manifold embedded in this higher dimensional space.

Hadamard product, denoted by the symbol ⊙. It is the element-wise product of two tensors of the same size

as seen in Eq. 2.6. [
𝑎 𝑏

𝑐 𝑑

]
⊙

[
𝑥 𝑦

𝑧 𝑤

]
=

[
𝑎𝑥 𝑏𝑦

𝑐𝑧 𝑑𝑤

]
. (2.6)

Our particular use-case of the Hadamard product we will encounter throughout the thesis is applying

element-wise operations such as masking operations in the context of images or video. In particular, we are

often dealing with tensors that are of the form X ∈ ℝ𝐶×𝐻×𝑊
, where 𝐶 is the number of channels, 𝐻 is the

height and𝑊 is the width of the tensor. It is assumed that the Hadamard product is applied element-wise to

each leading dimension - in this case 𝐶 if the dimensions of the tensors in all but the leading dimensions are

identical.

Dimensionality Reduction We can visualize low-dimensional tensors directly in terms of their basis

vectors, as shown in Fig. 2.2. From these visualizations some properties of the tensor can be directly inferred,

such as the rank, determinant, and in some cases even the eigenvectors of the tensor. However, for other

applications in machine learning, where the tensors might represent images or weights of a network and

are high-dimensional, plotting them is not feasible. Dimensionality reduction techniques such as PCA [32]

T-SNE [33] and related approaches such as the Singular Value Decomposition [34] can be used to visualize

high-dimensional data, see Fig. 2.4, for a visualization in a lower-dimensional space.
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Linear Models

The core concept of linear models is that they apply fixed nonlinear functions, known as basis functions, to

the input data. These models then express the output as a linear combination of these nonlinear functions.

In the case of polynomial regression, the input data is transformed into polynomial terms, but the model

remains linear in its coefficients.

This is in general done by applying a set of basis functions 𝜓 to the input data and linearly combining them

with a weight 𝑤, which is formulated as

⟨𝑤,𝜓⟩ = 𝑤⊤𝜓 where 𝜓(𝑥) =

𝜓1(𝑥)
𝜓2(𝑥)
...

 .
To illustrate an example we choose basis functions 𝜓 to be the 𝑛-th order polynomial, and the input data 𝑥 to

be a 1-D vector. The model is then given by

𝑦 =

𝑛∑
𝑖=0

𝑤𝑖𝜓𝑖(𝑥) where 𝜓(𝑥) =


𝑥0

𝑥1

...

𝑥𝑛


,

where 𝑤𝑖 corresponds to the coefficient for the respective polynomial term in 𝜓(𝑥). The linear model aims to

find the best set of 𝑤𝑖 values that allow the model to accurately represent the relationship between the input 𝑥

and the output 𝑦. The individual outputs 𝑦𝑠 for each sample 𝑠 are often joined together in the single vector

Y =


𝑦1

𝑦2

...

 ,
as well as the weights 𝑤 being combined in a single matrix W. The linear model can then be written in matrix

form with the basis functions already applied to the input data, i.e. ,

Y = ΦW, (2.7)

where Φ is the design matrix. It contains the transformations of individual samples 𝑠𝑖 , in this case the

polynomial basis functions of the 𝑛-th order polynomial, i.e.

Φ =

𝑠1 𝑠2 . . . 𝑠𝑚

 .
To be more explicit, assume that we are given a sample 𝑥1 = 2.1 and 𝑥2 = 3.4 with their respective ground

truths as 𝑦1 = 3.2 and 𝑦2 = 1.2. We can then transform the input data into the polynomial basis functions,

and stack them into a design matrix Φ, i.e.

𝑠1 =



1

2.1

2.12

...

2.1𝑛


, 𝑠2 =



1

3.4

3.42

...

3.4𝑛


, and Φ =



1 1

2.1 3.4

2.12
3.42

...
...

2.1𝑛 3.4𝑛


.
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𝑥

𝑓(
𝑥
)

(a) Good Quadratic Fit

𝑥

𝑓(
𝑥
)

(b) Good Cubic Fit

𝑥

𝑓(
𝑥
)

(c) Bad Quadratic Fit

Figure 2.5: Linear regression on three different samples, with different polynomial features. We can see that the quadratic model in

2.5a and the cubic model in 2.5b fit the data well as they match the underlying generating function 𝑓 (𝑥). However, note how in 2.5c a

quadratic model is used to fit a sinusoidal function, which results in a poor fit.

Similarly we can transform the ground truth into a vector Y, i.e.

Y =

[
3.2

1.2

]
.

The design matrix then contains the entire dataset with each column representing a sample and each column

representing a feature of all data points. We can now try to find the best weights W such that our prediction,

ΦW, matches the ground truth Y. One intuitive error function to minimize is the sum of squared errors,

which is given by

min

W

1

2

∥ΦW − Y∥2
2
. (2.8)

For models of this form, gradient descent algorithms are not necessary, as an analytic solution exists, resulting

in what is known as the Moore-Penrose Pseudoinverse [35, 36], Φ+.

W = (Φ𝑇Φ)−1Φ𝑇︸        ︷︷        ︸
Φ+

Y (2.9)

Examples of a quadratic and cubic linear polynomial model that fit given data very well are shown in Figure

2.5a and 2.5b. The problem with this method of function fitting is apparent in 2.5c. The basis functions are

fixed in advance and cannot be adapted based on evidence provided by the data. If the data, in this particular

case a simple sin(𝑥), is not well represented by the chosen basis functions, the model simply cannot accurately

represent the relationship between input and output.
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2.2 Neural Networks

Feed Forward Networks

Instead of using a priori fixed basis functions, neural networks learn the basis functions from the data.

The computation in a neural network is accomplished by applying a linear transformation followed by a

non-linear activation function at each neuron. This approach allows neural networks to automatically adapt

and optimize the basis functions based on the given data, making them highly flexible and powerful for a

wide range of tasks. In a typical neuron of a neural network, the computation can effectively be written as a

combination of weighted inputs, summed with a bias term, and then passed through an activation function,

i.e.,

ℎ(𝑥) = 𝑓

(
𝑛∑
𝑖=0

𝑤𝑖𝑥𝑖 + 𝑏
)
, (2.10)

where ℎ(𝑥) represents the output of the neuron, 𝑥𝑖 the input, and 𝑤𝑖 associated with the input at position 𝑖.

The bias 𝑏 is added to the sum before it is passed through a non-linear activation function 𝜎, or in literature

often confusingly referred to as 𝑓 . To avoid confusion between the whole networks that are usually called 𝑓𝜃
(with 𝜃 being the collection of all weights and biases in a network) we will use 𝜎 for the activation function.

Neural networks are often arranged in layers of neurons, where all layers that are not directly the output or

input nodes are referred to as a hidden layer ℎ, as seen in Fig. 2.6. When referring to hidden neurons we will

use the convention of using ℎ 𝑙
𝑘

where 𝑙 refers to the layer in the network, and 𝑘 identifies the 𝑘-th neuron in

that layer.

The distinguishing feature of linear models is that the weights 𝑤𝑖 that act as composite functions in a neuron

are learned from the data, and the non-linear activation function 𝜎 is applied element-wise to the output

of the transformation. A few common activation functions are shown in Fig. 2.7. The Rectified Linear Unit

(ReLU) and Gaussian Linear Unit (GeLU) are the de facto standard in many deep learning applications due to

their ease of computation and robustness with respect to vanishing gradients. Understanding how different

activation functions impact the network’s learning process is crucial for optimizing model performance.

Moreover, activation functions play a vital role in introducing non-linearity into the model, enabling it to

learn complex patterns.

+b

+b

+b

+b

+b

+b

+b

𝐼1

𝐼2

𝐼3

Input Hidden Output

(a) Feed Forward Network

𝜎 (∑𝑤𝑖 𝐼𝑖 + 𝑏)

ℎ1

2
(𝐼)

𝑏

𝑤1

𝐼1

𝑤2
𝐼2

𝑤3𝐼3

(b) Single Neuron

Figure 2.6: A simple feed forward neural network with one hidden layer (left) and the anatomy of a single neuron (right). The left side

illustrates a network architecture consisting of an input layer, a hidden layer, and an output layer. Each layer is fully connected to the

next, allowing information to be passed forward through the network. The right side focuses on a single neuron within the network.

Note that in the single neuron diagram, 𝜎(·) represents the fixed activation function, as described in Fig. 2.7. The activation function

determines the neuron’s output based on its input. The learned parameters are the bias 𝑏 and the weights 𝑤𝑖 , which are adjusted during

training to minimize the error of the network’s predictions. The bias arrow 𝑏 for every hidden unit is omitted in (a) to help with clarity,

but is attached to every hidden neuron, as shown in (b). The used shorthand notation places each corresponding bias term in the hidden

unit, denoted with +𝑏. All learnable parameters of a neural network are often denoted collectively as 𝜃, and are referred to as the

weights of the network. These parameters are crucial as they define the network’s ability to model complex functions.
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Figure 2.7: Common Activation functions (Top) and their derivatives (Bottom). Some functions like the Sigmoid and Tanh may suffer

from saturation problems, meaning that the gradient becomes very small for large or small inputs if the inputs are not normalized

appropriately. This can lead to problems in deep networks as very little gradient information might be propagated, leading to no

discernible improvement in the loss. The Rectified Linear Unit (ReLU) and its adaptation, the Leaky Rectified Linear Unit (Leaky ReLU) are

popular choices for deep networks as they do not suffer from saturation problems. Recently, the Gaussian Error Linear Unit (GeLU), a

smooth approximation of the ReLU, has shown real world benefits in the domain of large language models, even considering an increase

in computational complexity compared to the ReLU.

Example: Approximating a 1-D function We will briefly look at a simple example of a feed forward neural

network that consists of a single hidden layer with three neurons, and a single output neuron. The network is

trained to approximate a simple 1-D function, see Fig. 2.8. It is useful to think of each neuron separating its

input into two regions. Each neuron effectively divides its input into active and inactive regions, enabling

piece-wise linear approximations of the target function, with each neuron in the hidden layer contributing to

this approximation. The output is then a linear combination of these activations, weighted by the output

neuron’s weights. This simple example illustrates the power of neural networks to learn functions from data,

and how they can be used to approximate functions that are not well represented by fixed basis functions.

𝑥
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0
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w2 =


3.92

19.8

−3.9


𝑏2 =

[
−7.5

]

Figure 2.8: We can visualize the outputs of a hidden layer in a neural network by plotting the output of each neuron in the hidden layer. The

hidden layer activations are shown in the plots above the hidden layer nodes. The target function, 𝑓 (𝑥) = −4+ 𝑒−𝑥 sin(2𝑥) + 𝑒
𝑥
2 + cos(3𝑥),

is shown on the left and the output of the network is shown on the right. We can see the piece-wise linear approximation of the target

function by the network. As the activation function we use the LeakyReLU, see Fig. 2.7. We can also see how the final output is a linear

combination of the hidden layer activations. For example we can see that ℎ2 is responsible for the sharp drop from −2.5 to −2 and

is therefore scaled accordingly with the weight 𝑤2

2
= 19.8 and is positive. The same argumentation and reasoning can be applied to

the other hidden layer activations to produce the final output. Observe that the piecewise linear approximation, is depending on the

application already a good approximation of the target function, even with a shallow network only consisting of one hidden layer, with

three neurons.

An example of how different activation functions effect the approximation of a target function is shown in

Fig. 2.7. The experimental setup is identical to Fig. 2.8 and only the activation functions are changed.
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Figure 2.9: This figure builds on the scenario shown in Fig. 2.8 by illustrating the impact of various activation functions on the individual

neuron activations in a feed-forward neural network. We visualize the outputs of a hidden layer with different activation functions

(see Fig. 2.7) - Sigmoid, Tanh, GeLU, and, LeakyReLU. The same target function, 𝑓 (𝑥) = −4 + 𝑒−𝑥 sin(2𝑥) + 𝑒
𝑥
2 + cos(3𝑥), is used. Each

activation function influences the neurons and the resulting approximation of the target function differently. For instance, LeakyReLU

provides sharp transitions, while Tanh and Sigmoid produce smoother curves. The outputs of each hidden unit are displayed in a

stacked format below, with the final output being a linear combination of these hidden layer activations, shown in the rightmost column.

We have organized the hidden units so that those with similar contributions to the shape of the output function are grouped together in

columns. It is important to note that some hidden neurons have negative weights, meaning that an activation function producing an

output that appears dissimilar might actually contribute in a similar way to its counterpart with a different activation function, due to

the sign flip from the negative weight.
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The Universal Approximation Theorem [37] underpins this example, stating that even a single hidden layer

can approximate any continuous function to any degree of accuracy, provided it has enough neurons, as

shown in Fig.2.10. We can see that the same target function is approximated with a network consisting of a

single hidden layer, with 3, 10, and 50 hidden units. It is important to keep in mind that the approximations

of the function in Fig. 2.10 are only accurate in the region where the network has seen sample data. In the

regions where the network has not seen any data, the approximation may be extremely poor. This is shown in

Fig. 2.11, where a target function is approximated fairly well by a network with 50 hidden neurons. However

if we pass 𝑥 values outside of the range of the training data - indicated by the gray regions - the prediction is

wildly inaccurate.

Target Function
3 Hidden Neurons 10 Hidden Neurons 50 Hidden Neurons

Figure 2.10: A single hidden layer neural network can approximate any continuous function, to arbitrary precision, given enough hidden

neurons. In literature [37] referred to as the Universal Approximation Theorem. In this particular example, we see the approximation of a

function using a neural network with 3, 10, and 50 hidden neurons, following the example in Fig. 2.8.
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Figure 2.11: While the target function (red) is well approximated by the neural network (black) in the white region, the approximation is

poor in the gray regions, as no data in the gray regions was used to train the network.

Loss Functions In the previous example of regressing a 1D function we intuitively knew that a reasonable

error is the error between the prediction and the true value of the target function. This difference is known as

the residual, and is a measure of the error of the model. This error function is referred to as a Loss function, L.

There are many feasible loss functions, depending on the problem at hand. In the case of regression problems,

the Mean Squared Error (MSE), the Mean Absolute Error (MAE), and Huber-Loss with the parameter 𝛿, of

the residual error (𝑥) between prediction (𝑦̂)and ground truth (𝑦) are commonly used

L(𝑥) = |𝑥 | (MAE)

L(𝑥) = 1

2

𝑥2

(MSE)

L𝛿(𝑥) =
{

1

2
𝑥2

if |𝑥 | ≤ 𝛿

𝛿
(
|𝑥 | − 𝛿

2

)
if |𝑥 | > 𝛿

(Huber)

For a visual intuition of the increase in error as the prediction deviates from the true value, see Fig. 2.12.
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Figure 2.12: Loss functions for different prediction errors. (a) shows the Mean Squared Error (MSE) and Mean Absolute Error (MAE),

showing how the MSE increases rapidly as prediction errors increase, and the MAE is shown by a blue V-shaped curve that linearly

increases with prediction errors. The right plot (b) shows variations of the Huber loss function for different values of 𝛿. These curves

demonstrate how the Huber loss interpolates between MAE and MSE, becoming more quadratic as 𝛿 increases. This provides a smooth

and differentiable approximation to MAE, which is less sensitive to outliers than MSE. This visualization helps to understand how the

choice of 𝛿 affects the sensitivity of the Huber loss to outliers and errors of individual samples during training.

Assume a network 𝑓 , parametrized by learnable parameters
† 𝜃, that maps input data x to a prediction ŷ

through possibly multiple hidden layers, and a ground truth y. As discussed previously we can use the 𝐿2

norm (= MSE) to measure the dissimilarity between the prediction and the ground truth, which written

explicitly is given as

L(x, ŷ) = 1

2

| | 𝑓𝜃(x)︸︷︷︸
y

−ŷ| |2
2
. (2.11)

However, we will mostly be concerned with classification problems, where the output of the network is not a

single scalar value, but rather a probability distribution over classes. In the context of a two class classification

problem, the output can still be a single scalar value, which is then passed through a sigmoid function to

normalize the output into the range [0, 1], implicitly assigning all values below ≤ 0.5 to one class, and values

above > 0.5 to the other class. The sigmoid function is given by

𝜎(𝑧) = 1

1 + 𝑒−𝑧 , (2.12)

where 𝑧 is the output of the network, and is commonly called Logit. The extension of the sigmoid function

to multi-class classification is the SoftMax function, which normalizes the output of the network into a

probability distribution over 𝐾 classes. The SoftMax is given by

SoftMax(z)𝑖 =
𝑒𝑧𝑖∑𝐾
𝑗=1
𝑒𝑧 𝑗
. (2.13)

The loss function used for a multi-class is the cross-entropy loss, which is given by

L(y, ŷ) = −
𝐾∑
𝑖=1

𝑦𝑖 log(𝑦̂𝑖), (2.14)

where 𝑦𝑖 is the true label of the 𝑖th class, and 𝑦̂𝑖 is the predicted probability of the 𝑖th class.

The error surface, 𝐸, with respect to the parameters, 𝜃, of the network is given by the sum of the loss function

over all samples 𝑁 in the dataset containing, i.e.,

𝐸(𝜃) =
𝑁∑
𝑛=1

L( 𝑓 (𝑥𝑛), 𝑦̂𝑛). (2.15)

†
In literature 𝑤 is often used to refer of the weights of linear models or small feed forward networks, whereas 𝜃 is used for larger

collections of weights. It is therefore common to see 𝑓𝜃 to refer to a network and its parameters.
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Figure 2.13: Stationary Points of 𝑓 (𝑥) are characterized by 𝑓 ′(𝑥) = 0. For any meaningfully complex function, the loss surface will have

multiple local minima, maxima and saddle points. If no analytic solution exists, gradient methods are used to find minima / saddle

points of the loss function.

Trying to find a closed form solution for arbitrary neural networks is, unlike in the case of the linear models,

not possible as no closed form solution to of the form ∇𝜃𝐸(𝜃) = 0 exists. We therefore need to resort to

iterative optimization algorithms to find the optimal weights of the network that minimize the error function

𝐸(𝜃). Gradient Descent is such an algorithm that can be used to iteratively update 𝜃 in the direction of the

negative gradient of the error function with respect to the weights of the network.

Gradient Descent The gradient of the loss function is computed with respect to the weights of the network,

and is used to update the weights in the direction that minimizes the loss function. The update rule for

Steepest Descent for the weights is given by

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝐸(𝜃𝑡), (2.16)

where 𝜃𝑡 is the value of the weights at iteration 𝑡, 𝜂 is the learning rate, and ∇𝐸(𝜃𝑡) the gradient of the error

function with respect to the network weights. This gradient contains the partial derivatives of the error

function with respect to each weight of the network,

∇𝐸(𝜃) =
[
𝜕𝐸

𝜕𝜃1

, . . . ,
𝜕𝐸

𝜕𝜃𝑛

]
. (2.17)

The learning rate 𝜂 is a hyper-parameter that controls the size of the step taken in the direction of the gradient.

If the learning rate is too large, the optimization algorithm may overshoot the minimum and diverge. If the

learning rate is too small, the optimization algorithm may take unreasonably long to converge to a minimum.

Different heuristics exist to deal with the fact that the first order approximation of the function is only valid

in the vicinity of the current point, such as strategies that employ an adaptive learning rate [38], momentum

based optimizers [39, 40], or even optimizers that use second order information to make informed decisions

about the descent direction. In the case of the latter, the Hessian matrix is used to compute the curvature

of the error function, and can be used to improve the descent direction based on the curvature of the loss

function at the current point. However, in practice, the full Hessian matrix,

H = ∇2𝐸(𝜃) =


𝜕2𝐸
𝜕𝜃2

1

. . . 𝜕2𝐸
𝜕𝜃1𝜕𝜃𝑛

...
. . .

...
𝜕2𝐸

𝜕𝜃𝑛𝜕𝜃1

. . . 𝜕2𝐸
𝜕𝜃2

𝑛

 , (2.18)

is rarely used due to its computational complexity. Instead, approximations of H, such as the diagonal of H,

are sometimes used [38].

Optimizers We discussed in the previous section that the weights of a neural network are adjusted (‘learned’)
by minimizing a loss function. This is done by iteratively updating the weights of the network in the direction

of the negative gradient of the loss function that is computed over the entire dataset; this is Gradient Descent
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Evaluation of the expression and storage of intermediate values required for the backward pass.
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Consecutive application of the chain rule to compute the gradient of the loss w.r.t. the parameters.

Figure 2.14: The computational graph of the function L(𝐴, 𝐵, 𝐶, 𝐷) = ((𝐴 × 𝐵) + 𝐶) × 𝐷, showing the computation of the intermediate

values, 𝐸 and 𝐹, in the forward pass (left-to-right), and the gradient computation with the partial derivatives in the backward pass

(right-to-left).

see Eq. 2.16. For large datasets Gradient Descent itself is rarely used because it requires the computation of

the gradient over the entire dataset for a single update. Furthermore, it does not take any previous iterations

of the gradient step into account to potentially accelerate the convergence of the optimization algorithm.

Stochastic Gradient Descent which uses a subset of the data to compute the gradient, is often more practical.

The subset of the data that is used to compute the gradient is called a mini-batch. The update rule for the

weights stays the same, with the learning rate 𝜂 often adapted based on heuristics throughout training.

The learning rate can be adapted in a number of ways, such as using a learning rate schedulers [41, 42],

warmup-schedules [43], and good initialization schemes [44, 45], or momentum based optimizers [39, 46].

The de facto standard optimizer for training neural networks however, is the Adam optimizer [47], which is

an adaptive learning rate optimizer that computes the learning rate for each parameter individually and also

incorporates momentum.

Backpropagation and Automatic Differentiation Finding the gradient of the loss function with respect

to the weights of the network is a non-trivial task, as the loss function is a composition of many functions.

Fortunately Backpropagation [48, 49], a technique that computes the gradient of the loss function with respect

to the weights of the network, is an efficient way to compute the gradients needed for the optimization

algorithm to work effectively and at scale. It works by applying the chain rule of calculus throughout the

network back-to-front to break down complex derivatives into simpler parts, which can be numerically

computed.

In Fig. 2.14 we show a sample computational graph consisting of simple operations such as addition and

multiplication. Throughout the forward pass intermediate nodes that contain the current result are computed,

as well as values stored that are needed to compute the partial derivatives in the backwards pass. For

the backwards pass we start at the output node L and trivially compute the gradient of
𝜕𝐿
𝜕𝐿 = 1.0. This

kickstarts the backward pass and the gradient is passed to the predecessors of 𝐿, namely 𝐷 and 𝐹. The local

gradients are computed and stored in the respective nodes. Because the × operator was used to combine

𝐿, i.e. 𝐿 = 𝐷 × 𝐹 we can compute the partial with respect to both variables, and store them. It is helpful to

think of each node in the computational graph incorporating local gradient information, and the in-flowing

gradient information from the parent nodes, which in this case is just
𝜕𝐿
𝜕𝐿 = 1.0. To compute

𝜕𝐿
𝜕𝐶 we need to

apply the chain rule for the fist time; The local gradient information
𝜕𝐹
𝜕𝐶 is combined with the previously

computed in-flowing gradient from
𝜕𝐿
𝜕𝐹 . The code that implements the computational graph of Fig. 2.14, and

the corresponding gradients computed by an autograd engine, Pytorch [50], is shown in Fig. 2.15. In this

fashion it is possible to compute arbitrarily complex expressions with automatic differentiation, which is
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neither a fully numerical gradient method, nor a purely symbolic gradient method. From an implementation

perspective, it is a highly extensible and robust way to compute gradients, as each function only needs to

implement a forward and backward pass to be integrated into any graph. A through and in depth exploration

of the history, development, and optimization of automatic differentiation see [51].

code

1 import torch

2

3 # Define tensors with gradients

4 A = torch.tensor(2.0, requires_grad=True)

5 B = torch.tensor(-3.0, requires_grad=True)

6 C = torch.tensor(10.0, requires_grad=True)

7 D = torch.tensor(-2.0, requires_grad=True)

8

9 # Perform forward pass

10 E = A * B

11 F = C + E

12 L = D * F

13

14 # Retain gradients for intermediate variables

15 for var in [E, F, L]:

16 var.retain_grad()

17

18 # List of variables and their names

19 vars = {"A": A,"B": B,"C": C,"D": D,"E": E,"F": F,"L": L}

20

21 # Backward pass

22 L.backward()

23

24 # Display values and gradients

25 for name, node in vars.items():

26 print(f"| {name} | val:{node.item()} \t | grad:{node.grad.item()} \t|")

output

1 | A | val:2.0 | grad:6.0 |

2 | B | val:-3.0 | grad:-4.0 |

3 | C | val:10.0 | grad:-2.0 |

4 | D | val:-2.0 | grad:4.0 |

5 | E | val:-6.0 | grad:-2.0 |

6 | F | val:4.0 | grad:-2.0 |

7 | L | val:-8.0 | grad:1.0 |

Figure 2.15: Computational graph of a simple function, and the code that uses automatic differentiation to compute the gradients.

Datasets & Model Selection In this section, we discuss the structure and use of datasets in training machine

learning models, as well as strategies for model selection to ensure that the trained networks generalize

to unseen data. A dataset typically consists of 𝑛 individual samples, which is divided into a train- and a

test-set. The train-set is used to train the model, while the testing set is reserved exclusively to evaluate

the performance of the model once. This division helps to assess how well the model can generalize to

new, unseen data. Moreover, a technique called 𝑘-fold cross-validation is often used, where the dataset is

segmented into 𝑘 equal parts. During the validation process, each segment is used once as a validation-set

while the remaining segments collectively form the train-set. This method is illustrated in Figure 2.17a.
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Figure 2.17: Model selection strategies during training. (a) 𝑘-fold cross-validation is often used to determine the performance of a model,

to tune hyperparameters, and for the model selection to avoid over- and under-fitting. The dataset is divided into 𝑘 equal parts. 𝑘 − 1

parts are used as the train set, whereas the last part is used as validation set. The performance of the model is then averaged over the 𝑘
folds. (b) Early Stopping; during training the validation loss is monitored to prevent overfitting. This is done by comparint the training

loss and the validation loss. It is expected that the training loss will continously decrease, while the validation loss will decrease initially,

but at some point will begin to increase again as overfitting on the data happens. The optimal model that should be chosen is the one

that minimizes the validation loss.

(a) Underfitting (b) Good Fit (c) Overfitting

Figure 2.16: Depiction of model complexity and data fit: (a) Underfitting, where the simple red curve fails to represent the underlying

structure of the data points; (b) Good Fit, where the red curve accurately captures the structure of the data points; (c) Overfitting,

where the complex red curve not only represents the structure but also the noise within the data points. Strategies such as 𝑘-fold

cross-validation can help to determine model good parameters.

A significant disparity between train error (near zero) and test error (substantially higher) usually indicates

overfitting, see Fig. 2.16a. This occurs when the model fits precisely to every data point in the training set,

neglecting the fact that these points may include noise and may not represent the underlying data structure

accurately. To select the epoch at which overfitting has not yet occurred the validation loss is monitored, and

training is stopped when the validation error starts increasing while the train error is still decreasing, as

this indicates overfitting cf. Fig. 2.17b. Additionally it is advisable to begin training with a model of lower

complexity (i.e. fewer hidden units) and gradually increase the capacity by adding more layers and units

until it sufficiently captures the essential patterns of the data.

In addition to the dataset itself, datasets are often released with predefined splits, i.e., divisions between

training, validation and test sets. This standardization allows various models to be fairly compared and

evaluated on the same data, allowing competing algorithms to be evaluated fairly against each other.

Example: Classification of 2D data In Section 2.2 we discussed the structure of a simple feed forward

neural network, and how it can be used to approximate a 1-D function. We minimized the MSE, and used the

gradient of the error function to update the weights of the network. We will now look at a slightly more

complex example of a neural network that is used to classify 2-D data points, with the cross-entropy loss

as defined in Eq. 2.14. In particular, we consider our dataset to consist of two classes, where the class is

determined by the distance to the origin, as shown in Fig. 2.18. The goal now, is to train a neural network to

classify the points into the correct class. The network consists of a single hidden layer with three neurons,

ReLU activation functions, and two output neurons. The use of two output neurons is simply to demonstrate

that this approach scales to an arbitrary number of classes, since for a 2 class classification problem a single

sigmoid activation would suffice, see Eq. 2.13 and Eq. 2.12. After training the network according to the
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Figure 2.18: The dataset contains samples with 𝑥, 𝑦 coordinates. Depending on the location of the sample, it is classified as 𝑐0 or 𝑐1,

which we visualize as violet and yellow respectively classes respectively. The dashed lines show the visualization of the hidden layer

neurons as decision boundaries just as was the case in the 1-D example, see Fig. 2.8. Visualization of the decision boundaries of the

hidden layer neurons are shown in the top row, and the decision boundary that is a linear composite of the hidden layer neurons is

shown on the right. We only show the logit for 𝑐0 for simplicity. We can see how the hidden layer neurons that are each able to separate

the input data into a flat region and a region with a slope, can be combined such that a decision boundary that appears to be a square is

formed.

principles discussed in Section 2 with the proper train- and test-set splits we can inspect the learned piecewise

linear mappings in the hidden neurons.

The decision boundaries of the network for different activation functions can be plotted by passing a dense

grid of input points to the network, and monitoring the logits for each class. This is shown in Fig. 2.19 on the

right. Again note how the piece-wise constant activations induced by the ReLU activation function allow the

network to learn piece-wise linear decision boundaries, which are able to separate the two classes in the

input space. However as the input is two dimensional (𝑥, 𝑦 coordinates of each point) each input neuron

splits the input space again into two regions; one where the neuron is active and the slope is positive, and

one where the neuron is inactive and the slope is zero. The output neuron then combines these regions to

form the final decision boundary. Figure 2.18 shows the visualization of the planes formed by each neuron in

the hidden layer, and the final decision boundary that is obtained by a linear combination of the hidden

neurons. Note how the Sigmoid / SoftMax function squashes and amplifies the discrepancy (i.e. steepness of

the plateau) between the two classes, Fig. 2.19.

The progression of the learning processes for a few selected epochs is shown in Fig. 2.20, as well as the

influence of the different activations functions that are used in the hidden layer. The activation functions

used were shown earlier in Fig. 2.7.
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𝑐0 Logit 𝑐0 Probability

Sigmoid

Figure 2.19: Given the logit of class 𝑐0 we can apply the sigmoid function to get the probability of the class. We see how the sigmoid

function squashes the logit to a probability, which produces this sharp decision boundary along which the probability changes from 0 to

1. Note that the steepness of the decision boundy can inform us about the confidence of the model.
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Figure 2.20: Adaptation of the decision boundary over time for different activation functions. The decision boundary is shown in the

𝑥, 𝑦 plane, where purple indicates a high confidence for class 0 (𝑐0) and yellow indicates a high confidence for class 1 (𝑐1). Note how the

decision boundary changes over time and how the activation function affects the shape of the decision boundary. Also note that it is

only possible for such a simple dataset to display the decision boundary directly in the input space. Note that the plots above do not

represent a fully converged network and are for illustration purposes only. A fully converged network and its decision boundary is

shown in Fig. 2.19.
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Convolutional Networks

Until now we limited ourselves to discussing feed forward neural networks, where the input data is

transformed through a series of linear transformations and non-linear activation functions. However, in many

applications, such as image and video processing, the data is high-dimensional and has a grid-like structure.

In such cases, convolutional neural networks (CNNs) which are specifically designed to handle grid-like data,

are great alternatives. CNNs are composed of convolutional layers, pooling layers, and fully connected layers.

The convolutional layers apply a set of filters to the input data; an example of the convolution operation

with a fixed kernel K applied on an image I is shown in Fig. 2.21. which allows the network to learn spatial

hierarchies of features. The pooling layers downsample the input data, reducing its dimensionality; this is

shown in Fig. 2.22.
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Figure 2.21: Functional diagramm of a 2D convolution. In convolutional neural networks the weights of K are learned to detect certain

patterns in the input I. The output of the convolution is obtained by sliding the kernel K over the input I and computing the element-wise

product and summing the results. In convolutional neural networks the output I ∗K is refered to as Activation Map or Feature Map. In the

case of a neural network the activation map is also passed through a non-linear activation function, as previously discussed.
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Figure 2.22: The most common pooling operations are max pooling and average pooling. In this example we show the result of applying

a 2×2 max, and average pooling operation with stride 2 on a matrix. Their purpose is to reduce the spatial dimensions of the input tensor,

and thereby reduce the number of parameters in the model, as well as shift invariance. Pooling operations are common throughout

many different neural network architectures and are commonly applied after the activation function in a convolutional layer.

Concretely the convolution operation
†

in 1D is defined as

( 𝑓 ∗ 𝑔)(𝑡) =
∫ ∞

−∞
𝑓 (𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏 (Continuous)

( 𝑓 ∗ 𝑔)(𝑛) =
∞∑

𝑚=−∞
𝑓 (𝑚)𝑔(𝑛 − 𝑚), (Discrete)

with 𝑓 being the input signal, 𝑔 being the kernel, and ∗ being the convolution operator. The convolution

operation is commutative, associative, and distributive. Note that while convolutions are defined analytically

as integrations from negative to positive infinity, in practice the kernels have relatively small support, e.g., on

the order of 3 to 7 pixels in modern convolutional neural networks.

†
In practice cross-correlation is used, which is just convolution with a flipped kernel. However as the machine learning literature refers

to this as convolution we will follow the convention. Practically, it also makes no difference whatsoever as the kernels are learned from

data.
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(a) Fully connected layer with 25 weights.
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(b) Convolutional layer with 3 weights.

Figure 2.23: A visual representation of the different scaling of weights in a fully connected layer and a convolutional layer. The fully

connected layer has a total of 25 multiplicative weights and 5 bias terms totalling 30 learnable parameters, whereas the convolutional

layer consists of 3 multiplicative weights and 3 bias terms totalling 6 learnable parameters. Note that we chose the receptive field to be 3

for the convolutional layer, and a stride of 1. The stride is the number of steps the receptive field is moved across the input. In (b) we

highlight the actual multiplicative kernel weights and how they are overlayed on top of the inputs 𝑥𝑖 , indicated with the black dashed

box to produce ℎ2. It also graphically shows how the idea of weight tying, is used to create the inductive bias in convolutional networks.

Figure inspired by illustrations from [52].
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Figure 2.24: The stride parameter in convolutional layers determines the step size at which the convolutional kernel is slid across the

input. We can observe that larger strides result in smaller output sizes. All figures show a convolutional layer where no padding on the

input is applied. The purple and blue boxes indicate the first and second position of the convolutional kernel as it is slid across the input.

We also want to draw the distinction between convolutional layers and fully connected layers. In a fully

connected layer, each neuron is connected to every neuron in the previous layer, as shown in Fig. 2.23. This

results in a weight matrix that is unique between every connections between neurons in the previous and

current layer. This is in contrast to convolutional layers, where each neuron is connected to a local region of

the input data, which can also be seen in Fig. 2.23 as the banded structure of the weight matrix, that is the

same in the support of the convolutional kernel.

The convolution operation itself is also often parametrized with stride and dilation parameters that greatly

influence the receptive field of of deep convolutional neural networks. The stride of the convolution determines

the step size at which the kernel is slid across with the input signal, see Fig. 2.24. Often the stride parameter

is used as a way to downsample the input signal, instead of directly applying pooling layers. This has the

benefit of saving computation, but trades of spatial sampling of the input signal.

Another important concept is that of kernel dilation, see Fig. 2.25. It is a technique used to expand the

receptive field of filters without increasing the number of parameters or the computational complexity.

Dilation involves spacing out the elements of the convolution kernel, inserting gaps between each element

within the kernel window. This allows the kernel to cover a larger area of the input signal, enabling the

network to incorporate broader contextual information from the input data into the feature maps it produces.

By adjusting the dilation rate, a network can control the scale of context it extracts, with higher dilation rates

capturing wider spatial relationships. Dilation effectively enlarges the field of view of filters, allowing deeper

layers to see further into the input without the need for pooling or larger convolutional filters.

As shown in Fig. 2.21, the spatial resolution decreases if the convolution is directly applied to the input. In

practice it is often desirable to keep the spatial resolution constant. To achieve this the input is often padded
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(a) Dilation factor 0 (b) Dilation factor 1

Figure 2.25: A 3 × 3 convolutional filter with dilation factors 0 and 1. The dilation factor determines the spacing between the elements in

the convolutional kernel, and is used to increase the receptive field of the network without increasing the number of parameters. In the

example above we can see how the receptive field of a filter increases, at the cost of spatial fidelity.
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Figure 2.26: The LeNet-5 architecture consists of 3 convolutional layers, 2 pooling layers, and 2 fully connected layers. It introduced

several key components that have become standard components in modern CNNs, such as downsampling through convolution and

pooling, followed by fully connected layers. The network was designed to classify handwritten digits from the MNIST dataset.

around the edges of the input image with half the size of the convolution kernel. The values with which the

input is padded is often set to zero, but can vary depending on the application and can include reflection or

padding with the value at the border itself.

Examples of early Convolutional Networks Fukushima et al. [53] introduced in their seminal work the idea

of convolutional networks, motived by the structure of the visual cortex. Other early work such as LeNet-5

[54], developed by Yann LeCun et al. in 1989 was one of the first successful applications of convolutional

networks to handwritten digit recognition. A schematic of the LeNet-5 architecture is shown in Fig. 2.26.

The architecture is relatively simple by todays standards, yet it introduced several key components that

have become standard components in modern CNNs. The network features a series of layers that include

convolutional layers, subsampling layers (pooling layers), and fully connected layers. What makes LeNet-5

notable is its systematic use of convolutional layers to learn hierarchical feature representations of the input

images - a concept that is at the heart of all modern convolutional networks.

VGG16 [6], developed and published in 2014 (25 years after LeNet-5), marked a significant advancement in

convolutional neural networks. This architecture distinguished itself through its depth and the use of very

small (3 × 3) convolution filters, a novel approach at that time. The model consists of 16 layers, including

13 convolutional layers and 3 fully connected layers, demonstrating the effectiveness of deeper networks

for complex image recognition tasks. The schematic of the network is shown in Fig. 2.27. The appeal lies

in its straightforward, uniform structure that allows for the stacking of small filters to achieve a receptive

field similar to those of larger filters but with deeper non-linearities and fewer parameters. However, despite

its successes, VGG16 contrasts with modern convolutional networks in several significant ways. Today’s

architectures are more parameter-efficient, using techniques such as batch normalization, skip connections,

or depth-wise separable convolutions to reduce the parameter count while enhancing performance. The
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Figure 2.27: The VGG16 architecture consists of 5 distinct convolutional stages, where in each stage the spatial resolution stays the

same. In each stage convolutions are followed by a ReLU activations, and at the end of each stage the activations are pooled to reduce

the spatial resolution. After the conv5 block three fully connected layers further reduce the number of activations until the final fully

connected layer has the same number of outputs as there are classes in a classification task. Lastly a SoftMax function is applied to the

output of the network to normalize the output into a probability distribution over the classes. In terms of terminology, all convolutional

layers are often referred to as the Backbone of the network, and the fully connected layers are referred to as the Head of the network.

introduction of residual connections, which will be discussed in the next Chapter, in newer models helps to

train very deep networks more effectively by alleviating issues like vanishing gradients, which can affect

deep networks like VGG16.

Inductive Bias Convolution is invariant with respect to translation of the input signal, which means that

the network can learn to recognize patterns in the input data regardless of their position in the input signal.

This inductive bias is particularly useful in image processing, to detect objets in images, independent of their

position in the image. This is in contrast to fully connected networks, which do not have this inductive bias

and must learn to recognize patterns in the input data regardless of their position.

It is important, however, to distinguish between invariance and equivariance, as they are often used

interchangeably but have different meanings. Given a function 𝑓 (·) and a transformation 𝑇(·) the following

properties hold:

𝑓 (𝑇(𝑥)) = 𝑓 (𝑥) 𝑓 is Invariant w.r.t. 𝑇

𝑓 (𝑇(𝑥)) = 𝑇( 𝑓 (𝑥)). 𝑓 is Equivariant w.r.t. 𝑇

It is desirable that networks for image classification are invariant to some transformations in the image space

as they do not change the underlying class that is depicted in the image. A cat is still a cat regardless of

its position in the image. We therefore want the prediction of the network to be invariant to translations

of the input image. CNNs often incorporate mechanisms to handle invariance implicitly through pooling

layers, which help to abstract away positional details while retaining crucial information. The final fully

connected layers that operate on the features extracted from the convolutional layers are then responsible for

combining the features to form a classification decision that is invariant to the position of the object in the

image. However, CNNs inherently lack the ability to be equivariant to transformations such as rotation or

scaling. Other methods of convolution, such as harmonic networks [55], have been developed to address this

limitation. They are not as widely used as traditional CNNs for many common tasks such as object detection,

as many problems relating to rotation and scale can be solved through data augmentation, indirectly. Methods

to introduce positional awareness into convolutional networks exists and generally follow the idea of adding

spatial coordinates to the input data, see Fig. 2.28. Depending on the task and especially if the dataset enforces

some sort of spatial structure, it can be beneficial supplement the input images with image coordinates [56].
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Figure 2.28: The figure showcases the Coordinate Convolution (CoordConv) approach, which integrates the Y-coordinate and X-

coordinate matrices, each matching the input’s height and width ℎ × 𝑤, into the input image’s channel dimension, resulting in an

augmented input of (𝑐 + 2) × ℎ × 𝑤, with 𝑐 being the original channel count. This strategy incorporates spatial coordinates into the

convolution, enabling the network to leverage pixel position information. Many types of coordinate convolution have been tried such

as polar or sinusoidal coordinate representations, where spatial context is key. All these strategies have in common that they try to

enhancing the model’s spatial awareness and understanding.

Figure 2.29: The MNIST dataset comprises 70k images of handwritten digits, each 28 × 28 pixels in size. The last row shows the average

digit computed over the entire dataset.

Interpretation and Visualization

Linear Models and simple MLPs The interpretation of the weights of a model is a powerful tool to

understand the inner workings of the model, and to gain insights into the structure of the data that the model

has learned. We will compare the weights of a linear model to the weights of a neural network (without

non-linear activation functions) that has been trained on the same dataset. We will see that the weights of a

linear model can be interpreted as templates, with a high response if the input image resembles the template.

Similarly we will see that the weights of a neural network in the last layer can just as easily be interpreted as

templates. This insight is important because for most classification tasks a network can semantically be split

between its Backbone, and its Head. The Backbone is responsible for extracting rich feature representations

through different mechanisms such as convolution, pooling, non-linear activation, normalization or attention.

The Head however is often just one (or more) fully connected layers that act on the extracted features, and can

therefore be interpreted as a template matcher, i.e. a linear classifier.

We will use the MNIST dataset to illustrate this point, and compare the weights of a linear classifier to the

weights of a neural network that has been trained on it. The MNIST dataset consists of 70,000 images of

handwritten digits, each 28 × 28 pixels in size. It is popular due to its simplicity and the notable interclass

diversity it presents, such as variations in stroke thickness and slant, as can be seen from plotting a few

samples of the dataset in Fig. 2.29. We will consider a linear classifier that directly operates on the pixel values

of the input data. More concretely this means that we will reshape each 28× 28 image into a 784-dimensional



32 2 Preliminaries

Data Manifold

Figure 2.30: The Manifold Hypothesis: The data is embedded in a low-dimensional manifold within the high-dimensional image space.

It effectively means that images (or other data) do not populate the entire space densely, but rather are concentrated around certain

structures within it. It explains the success of deep learning models in learning representations, as the networks both transform the data

into a lower-dimensional feature representation while learning at the same time a partitioning of that subspace according to the task. A

prominent example of this is the success of auto-encoders [57–59] in learning low-dimensional representations of data.

vector, i.e. 𝑥𝑖 ∈ ℝ𝑑 , 𝑑 = 784 and assemble our design matrix Φ from the reshaped images, where each image

is treated as a column in the matrix

Φ =

x1 x2 . . . x𝑛

 ∈ ℝ𝑑×𝑛 .

We further encode the labels of the dataset as one-hot vectors, and denote the labels as Y ∈ ℝ10×𝑛
, where 𝑛 is

the number of samples in the dataset, and 10 is the number of classes in the dataset. This allows us to learn a

linear classifier that maps the input data to the labels of the dataset, i.e. WΦ = Y. Graphically expanded it

looks as follows: 
𝑤1

...

𝑤10

︸             ︷︷             ︸
10×𝑑

x1 x2 . . . x𝑛

︸                 ︷︷                 ︸
𝑑×𝑛

=

𝑦1 𝑦2 . . . 𝑦10

︸                   ︷︷                   ︸
𝑛×10

. (2.19)

Visualization of the learned templates Each weight of the weight matrix W of the neural network can be

reshape to the dimensions of the input data. The resulting images that can be interpreted as the templates for

a particular class are shown in Fig. 2.31. The reason they can be interpreted as a template, is that the output Y
is computed as the inner product of the input data with all the weights of the network, ⟨sample, templates⟩.
Seeing the structure in Eq. 2.19 we can observe that one sample xi is multiplied with all weights W where

each row in wi is responsible for the logit in the resulting vector yi. The learned and reshaped templates of

the linear classifier and the neural network are shown in Fig. 2.31. Similarly we can also visualize the weights

that are obtained by solving the linear classification problem with the Moore-Penrose Pseudoinverse, as

described in Eq. 2.9. Note how both the linear classifier and the neural network have learned templates that

resemble the average digit of the MNIST dataset, as shown in Fig. 2.29 in the bottom row.

Connected to the idea of feature extraction and partitioning is the manifold hypothesis that suggests that the

data manifold is embedded in a much lower dimension than the input data. This is an important concept as it

suggests that the essential features or variations in the data can be captured by a lower-dimensional manifold.

Networks at the same time transform the input data in a way that the essential features can be captured by a

lower-dimensional representation, and then can perform partitioning in this lower-dimensional space. An

analogy of how such a manifold might look is shown in Fig. 2.30. This way of thinking about the manifold

also gives a nice visual explanation of data augmentation, as it suggests that the data manifold is much larger

than the data that is available, and that the network can learn to generalize better by learning the structure

of the manifold which can be achieved by incorporating transformations of the input data that should not

change the underlying class of the data
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Moore-Penrose Pseudoinverse

Stochastic Gradient Descent @50 iterations, weight decay 10

Stochastic Gradient Descent @50 iterations, weight decay 1

Stochastic Gradient Descent @50 iterations, weight decay 0.1

Stochastic Gradient Descent @50 iterations, weight decay 0.001

Figure 2.31: Visualization of the weights of a linear classifier on the MNIST dataset. The linear classification problem reduces to WΦ = Y,

where W ∈ ℝ10×784 ,Φ ∈ ℝ784×𝑛 ,Y ∈ ℝ𝑛×10
. This means that we can reshape the weights of the linear classifier into the shape of the

input data. As the dot product of each row of the input data with the weights is computed ⟨sample, templates⟩, the weights can be

interpreted as a template, with a high response if the input image resembles the template.
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Activation Maximization

Throughout this introduction we have been able to visualize the weights of the networks directly. In the case

of the feed forward network in 1-D and 2-D we were able to visualize the weights as a function of the input

space. In the case of the linear model on the MNIST dataset we were able to interpret the learned weights as

templates for the individual classes. This direct way to visualize the weights of a network, however, reaches

its limits when considering more complex networks with high dimensional inputs such as images. In these

cases, the weights of the network are not directly interpretable as a function of the input space, but rather as

a function of the activation maps of the previous layer. This makes it difficult to draw direct conclusions

from the weights of the network. One way to visualize arbitrary neurons of a learned network is Activation

Maximization [60]. It is a technique that uses the gradient information of a neuron in the network to adapt

the input image to the network in such a way that this particular neurons activation is maximized. This

method is particularly valuable for probing deeper layers of a network, as it results in data that lives in the

space of the input. For example, this means that an image is produced by probing individual neurons in a

network that is trained for object detection.

(a) Hyena (b) Snail (c) Chameleon (d) Snake (e) Teddy

Figure 2.32: Activation Maximization with data term regularization can be used to generate images that maximize that maximize the

activation of a specific class neuron in a pretrained network. The images above are generated with a pretrained VGG16 network on

ImageNet. One can clearly see typical patterns such as canine facial features in the hyena image, or the shell of the snail. Note that due to

the gradient ascend algorithm and different initial images the generated images can vary for different runs.

Activation Maximization aims to find the input that maximizes the activation of a target neuron or sum of

neurons (i.e. a whole layer) in a neural network. This is achieved by iteratively adjusting the input image to

increase the activation of the target neuron or layer by using the gradient of the activation with respect to the

input image. The optimization process can be regularized to ensure that the generated image is natural and

not just a noise pattern that maximizes the activation of the target neuron. In the case for a image classification

network this means that we are able to generate images that maximize the activation of a specific class,

i.e. look like a template of that class, see Fig. 2.32.

A neural network, 𝑓 , with weights 𝜃, and trained to have 𝑐 class outputs, maps an input 𝑥 to an output 𝑦 in

ℝ𝑐
:

𝑓 (𝑥;𝜃) : 𝑥 ↦→ 𝑦 ∈ ℝ𝑐

where 𝑐 represents the number of classes. Activation Maximization aims to find an input 𝑥 that maximizes

the activation of a particular neuron. For a neuron corresponding to class 𝑒 (where 𝑒 is one of the 𝑐 classes),

this can be formulated as:

𝑥∗ = arg max

𝑥

𝑓 (𝑥;𝜃)𝑒 ,

and is shown in Fig. 2.32. If the goal is not to maximize the output neuron but rather a collection of neurons in

a specific layer 𝑙, computing the collective activation involves summing the activations of all neurons in that

layer. Let ℎ 𝑙
𝑖
represent the activation of the 𝑖-th neuron in layer 𝑙. The input to these neurons is 𝑓 𝑙−1(𝑥;𝜃)†,

which is the input 𝑥 processed by all layers up-to, and excluding 𝑙. The objective is to maximize the sum of

these activations, denoted by 𝐴𝑙 :

𝐴𝑙( 𝑓 (𝑥;𝜃)) =
∑
𝑖

ℎ 𝑙𝑖 ( 𝑓
𝑙−1(𝑥;𝜃)) (2.20)

†
Another way to think of this processing is the concatination of all hidden layers up to 𝑙, resulting in the concatenated formulation of

𝐴𝑙( 𝑓 (𝑥;𝜃)) = ∑
𝑖 ℎ

𝑙
𝑖
((ℎ 𝑙−1 ◦ · · · ◦ ℎ2 ◦ ℎ1)(𝑥;𝜃)).
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Input Image

“Hummingbird” (94.2%)

Adversarial Image

“Flammingo” (99.9%)“Tick” (2.8%)

Adversarial Noise

+ =0.03 ×

Figure 2.33: Activation Maximization can be applied by providing a real image as the starting point, and maximizing the activation of a

logit corresponding to the target class that does not match the actual class of the image. The resulting image is an adversarial example

that is misclassified by the model, with an extremely high confidence. The difference between the adversarial image and the input image

is the adversarial noise, and is shown with a scaling of ×33 because the noise would otherwise be too small to see. Again note that this is

only possible because no regularization on the image is applied during the optimization process, cf. Eq. 2.21

The input that maximizes the activation of layer 𝑙 can be expressed as:

𝑥∗ = arg max

𝑥

𝐴𝑙( 𝑓 (𝑥;𝜃))

To achieve this, 𝑥 is iteratively adjusted using gradient ascent, where 𝜂 represents the learning rate:

𝑥 ← 𝑥 + 𝜂 · ∇𝑥𝐴𝑙( 𝑓 (𝑥;𝜃))

Here, ∇𝑥𝐴𝑙 is the gradient of 𝐴𝑙 with respect to 𝑥.

To ensure the generated image resembles natural inputs, regularization techniques are applied during the

optimization process. These may include TV regularization, jitter, blurring, and value clipping. This can be

interpreted as projected gradient descent with a regularization term. This is given by:

𝑥 ← 𝑥 + 𝜂 · ∇𝑥𝐴𝑙( 𝑓 (𝑥;𝜃)) − 𝜆 · 𝑅(𝑥), (2.21)

where 𝜆 is the regularization strength, and 𝑅 a particular Regularization strategy such as | | · | |2. Activation

Maximization provides a powerful tool for visualizing and understanding the internal representations of

deep neural networks, because it allows us to generate patterns in the image domain that show us what type

of pattern most activate a neuron. The down side of this approach is that the resulting images can be hard to

interpret and in any case they place the ultimate burden of interpretation on the viewer of the images.

Adversarial Examples Adversarial attacks are a class of techniques can be used to generate input images

that are misclassified by a neural network with high confidence. Activation Maximization can be used to

generate adversarial examples by optimizing the input to maximize the activation of a target class without
explicitly regularizing the image during the optimization process. This effectively creates images that are

misclassified by the network, but are visually indistinguishable from the original input. An example of such

an adversarial example is shown in Figure 2.33, where the input image is a picture of a hummingbird, but

the network classifies it as a flamingo with a confidence of 99.9%. The adversarial noise is the difference

between the adversarial image and the input image.
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2.3 Optical Flow

Considering that our world is dynamic and that objects in the world move around, it stands to reason to

model that motion in order to understand the world better. Modeling the true 3D motion of objects in the

world requires knowledge about the depth of objects, their relative velocities, and the motion of the camera.

The task of understanding and calculating the real 3D motion from images is called Scene Flow. Estimating the

apparent 2D motion of objects as they appear in images, is a easier task in many ways. This apparent motion

of pixels in the image - the Optical Flow - is for many tasks a sufficient representation. An example of the

optical flow between two consecutive frames is shown in Fig. 2.34. The optical flow is a as a 2D vector field as

it describes the displacement of a pixel in one image to its corresponding position in the second image. A

more intuitive and better visualization of that flow field is the Middleburry [61] color coding that assigns a

color hue to the direction and the saturation to its magnitude. An example of this encoding in either vector

form and Middleburry coding is shown in Fig. 2.35.

Frame 1
Overlayed Frame 2 Ground Truth Optical Flow

Figure 2.34: Two Frames from a Synthetic Video, and the optical flow between the two frames. Frame 1 is shown on the left, with Frame

2 overlayed on top of Frame 1 in the center. On the right the ground truth optical flow field is shown. The ground truth is available

available directly because the used dataset, Sintel [62], is synthetic.

Note that due to the Aperture Problem the optical flow for a given image pair is not unique
†
, and the same

motion can be described many underlying motions. This is illustrated in Fig. 2.36. For action recognition,

where relative motion between neighboring pixels is often sufficient, optical flow is a reasonable compromise

between computational complexity and the accuracy of motion estimation.

(a) Optical Flow Field as a Grid of Vectors. (b) Middlebury Color Coding

Figure 2.35: Optical flow is the apparent motion of objects in the scene. It can be represented as a grid of vectors, where each vector

represents the motion of a pixel in the image. The length and direction of the vector indicate the magnitude and direction of the motion

which can also be color coded such that the speed corresponds to the saturation of the color and the direction to the hue of the color.

Such color coding is known as the Middlebury[61] color coding.

†
For some image pairs, e.g. noise patterns, it is unique.
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Figure 2.36: Illustration of the Aperture Problem in Optical Flow Estimation. The aperture problem arises when motion detection

is attempted through a "aperture" limiting the observer’s view to a small portion of a larger scene that might contain context for

disimbiguation. In this illustration, only the local motion of a single edge of a moving object is visible through the aperture. Due to this

limited view, the direction of motion appears ambiguous: the object could be moving vertically, horizontally, or along any diagonal that

projects the same edge motion within the aperture. This problem highlights the difficulty in determining the full, two-dimensional

vector of motion from limited one-dimensional local visual information.

Classical Methods

We will briefly discuss methods of computing the optical flow, and more broadly discuss techniques and

concepts that are useful even beyond the scope of optical flow.

Variational Methods Classical approaches such as Horn-Schunck [63] and Lucas-Kanade [64] estimate

the motion from two consecutive frames of a video sequence using a variational framework. At its core, the

problem can be written as an energy cost function with a data fidelity term 𝐷, and a regularization term 𝑅:

𝐸(𝑢) = 𝐷(𝑢, 𝐼) + 𝛼𝑅(𝑢), (2.22)

where 𝐼 refers to the input images, 𝑢 to the optical flow field, and 𝛼 ∈ ℝ is a weighting parameter. Often

the image 𝐼 is also thought of as an image function of spatial coordinates. We already encountered a type of

regularizer 𝑅 in Sec. 3 when we discussed the Total Variation Regularization in the context of adversarial

examples produced by activation maximization. The purpose of both terms is the same; to penalize solutions

that are quantifiably bad, with respect to the regularization term. In the context of optical flow estimation, the

regularization term 𝑅 can be used to ensure that the estimated optical flow is smooth, and the data fidelity

term 𝐷 ensures that the estimated optical flow is consistent with the input images. The energy function is

minimized to estimate the optical flow field. To weight the individual terms, an additional parameter 𝛼 is

introduced which can trade off the accuracy with respect to the data fidelity versus the smoothness of the

optical flow estimation.

Horn-Schunk [63] model the data term𝐷 with the brightness constancy such that the brightness of a matched

pixel in the two frames is the same, i.e.

𝐼1(𝑥) ≈ 𝐼2(𝑥 + Δ𝑥). (2.23)

Additionally, it is assumed that a single imaging function 𝐼 is responsible for the brightness of the pixels in

both images, 𝐼1 and 𝐼2, and this brightness only depends on the spatial coordinates 𝑥 and the time 𝑡. Using a

(first-order) Taylor expansion around the point (𝑥, 𝑡) and assuming that the motion is small, the brightness

constancy assumption can be expressed as:

𝐼(𝑥 + Δ𝑥 , 𝑡 + Δ𝑡) ≈ 𝐼(𝑥, 𝑡) +
𝜕𝐼

𝜕𝑥
Δ𝑥 +

𝜕𝐼

𝜕𝑡
Δ𝑡 . (2.24)
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Horn-Schunk [63] TV-L1 [65] Ground Truth

Figure 2.37: Optical Flow estimates of two different variational methods. The difference to the ground truth is most apparent at the

object boundaries, due to the penalization of discontinuities.

Defining the optical flow velocity 𝑣 as a displacement in space Δ𝑥 over a displacement in time Δ𝑡 ,

𝑣 =
Δ𝑥

Δ𝑡
, (2.25)

and rearranging the terms under the assumption that 𝐼(𝑥 + Δ𝑥 , 𝑡 + Δ𝑡) = 𝐼(𝑥, 𝑡) leads to

𝜕𝐼

𝜕𝑥
Δ𝑥 +

𝜕𝐼

𝜕𝑡
Δ𝑡 = 0 | ÷ Δ𝑡

𝜕𝐼

𝜕𝑥

Δ𝑥

Δ𝑡
+ 𝜕𝐼

𝜕𝑡
= 0 |insert Eq.2.25 for 𝑣

𝜕𝐼

𝜕𝑥
𝑣 + 𝜕𝐼

𝜕𝑡
= 0.

Such approaches however suffer from the problem that the edges along objects in the scene are not well

preserved, and the optical flow is often not accurate at object boundaries due to L2 regularization. Methods

such as the TV-L1 [65] method have been proposed to address this issue, by using a L1 regularization term

instead. In Fig. 2.37 we show the differences of the optical flow estimation between the Horn-Schunck, TV-L1

method.

Feature Pyramids The idea to process the same image at multiple resolutions and combine the features

from the different resolutions is a common technique in computer vision. Features from the lower resolution

provide a good initial guess on top of which fine-grained details can be added. This idea of using a hierarchical

representation to estimate optical flow at various levels is shown in the schematic in Fig. 2.38b. Also note that

the ability of coarse-to-fine pyramids can be useful to extend the capture range of optical flow estimation.

Quality and Warping of Optical Flow The quality of an optical flow estimate can be computed if the

ground truth optical flow exists. The error between the ground truth optical flow and the estimated optical

flow can be computed using the MSE or the End Point Error (EPE). The commonly used EPE is the average

Euclidean distance between the ground truth optical flow and the estimated optical flow.

The direction of computation of the optical flow is often referred to as the forward flow, and the backward

flow. The forward flow 𝐹1→2 and the backward flow 𝐹2→1 warping process is visualized in Fig. 2.39.

This can of course only be done if the ground truth optical flow is available, which is often not the case.

One method to evaluate the quality of the optical flow field without ground truth is warp image 1 with

the computed optical flow to produce image 2. This then allows the computation of an error in pixel-space

between the warped image 1 and image 2. This error is often called the photometric error, and is used
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(a) Image Pyramid with 3 Levels (b) Optical Flow Estimation: Coarse-to-Fine

Figure 2.38: Incorporating ideas such as a Image Pyramid (a) into optical flow estimation is useful as it allows the gradual incorporation

of fine grained details at higher resolutions without degrading the overall flow by inducing noise. Figure (b) taken from [66].

to evaluate the quality of the optical flow field. Note that warping is also a useful technique for iterative

refinements: Calculating the optical flow between two images, warping one image to the other using the

optical flow, and repeating the procedure with the just generated warped image to accumulate the flow

across iterations for a final solution.

Another interesting application is the use of cycle consistency to evaluate the quality of the optical flow field.

This is done by warping image 1 with the optical flow to produce image 2, and then warping image 2 with

the inverse optical flow to produce image 1, consider Fig. 2.35 on how to invert the direction from 𝐹1→2 to

𝐹2→1. The error between the original image 1 and the warped image 1 is then computed. This error is often

called the cycle consistency error.
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Forward Warping

Backward Warping

𝐹1→2

𝐹2→1

Image 1
Image 2

Figure 2.39: Illustration of backward and forward warping. Given the two frames 𝐼1 and 𝐼2, the forward warping process maps the pixels

from 𝐼1 to 𝐼2 using the optical flow field. The backward warping process maps the pixels from 𝐼2 to 𝐼1 using the inverse optical flow field.

With dense optical flow the resulting forward and backward flow are often not exactly indentical when inverting the backward flow for

example. This is due to occlusions and border effects present in the images.

Learning Based Methods for Optical Flow Estimation

The aforementioned variational methods for optical flow estimation relied on explicit assumptions that

were modeled through the data term 𝐷 and the Regularizer 𝑅. Other approaches that do not rely on these

assumptions have been proposed, and are often referred to as learning-based methods. The learning-based

methods learn the optical flow estimation directly from the data, and do not rely on explicit assumptions

about the data. In general all methods for optical flow will compute the flow field based on matching features

between two frames. The main difference between the methods lies in how the features that are matched are

computed, and how the resulting matches are refined. In classical methods the features themselves were

often the image values or derivatives of the intensities. In learning based methods features are extracted,

often with convolutional networks. These features are then matched in the second image, producing a better

initial displacement which is then refined. It is noteworthy that just as in classical methods the optical flow

estimation is often computed in a coarse-to-fine manner.

Conv 1 Conv 2
Conv 3

Correlate

Conv 1 Conv 2
Conv 3

Conv 3_1

...
Conv 6

...
Upconv 5 Upconv 2

Conv 5 Conv 4 Conv 3

Conv 2

Figure 2.40: The FlowNet architecture for optical flow estimation. It consists of a series of convolutional layers, which are used to extract

features from the input frames, and a correlational block that matches them. A series of deconvolution layers in the refinement section

are used to upsample the features to the resolution of the optical flow. Additional features from one frame are used in the refinement to

give potential edge aware context to the predicted optical flow.
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FlowNet The earliest End-to-End architecture for optical flow estimation is FlowNet [67]. FlowNet is based

on a convolutional encoder-decoder architecture, and its schematic is illustrated in Fig. 2.40. Convolutional

layers are used to extract a feature representation from two consecutive frames which is then explicitly

correlated, resulting in a correlation volume. That correlation volume is then continuously refined with more

convolutional layers until a bottleneck is reached. A decoder then upsamples the features in the bottleneck

and additionally incorporates features of the image before the correlation volume into the upsampling stages.

These upsampling stages are implemented with transpose convolutions and increase the resolution of the

feature blocks until they match the original input image. In the last layer the channels are compressed to 2

channels such that it can be interpreted as a displacement vector. The EPE between the predicted optical flow

and the ground truth is used to provide a signal for training. The FlowNet architecture was the first to show

that it is possible to learn the optical flow estimation directly from the data, and it has since been improved

upon by many other architectures.

PWC-Net PWC-Net [66] adapted ideas from earlier work such as SpyNet [68] and incorporates a learnable

feature pyramid into the optical flow estimation. Furthermore a cost volume is computed from the features

extracted from the feature pyramid, and the optical flow is then computed from the cost volume. The

PWC-Net architecture is shown in Fig. 2.41. PWC-Net also introduced dedicated warping layers, which were

spiritual predecessors to the recurrent refinement architectures that followed.

Figure 2.41: PCW-Net adopts the idea of a multi scale feature pyramid that is used to estimate the optical flow. Figure taken from [66],

Fig. 3.

Recurrent All-Pairs Field Transforms RAFT [69] drastically improved the performance across many optical

flow benchmarks when it appeared. In RAFT, the feature extraction process involves first downsampling the

input images and then extracting features with a convolutional neural network. This serves to condense the

image data into a more computationally manageable form while emphasizing essential, robust features. The

core of RAFT processing power lies in its construction of a 4D correlation volume from these downsampled

features. This volume, see Fig. 2.42, which represents the similarity measures across every possible pairing

of pixels between the two frames, allows for finding good matches across the feature pyramid from which

initial motion vectors can be derived. These initial motion vectors are then iteratively refined with a type of

recurrent neural network.

Image 1 Image 2
∈ � × � × � × ��

1
∈ � × � × �/2 × � /2�

2
∈ � × � × �/4 × � /4�

3

Figure 2.42: At the heart of RAFT is the 4D correlation volume at different scales. Computing this volume allows matching a pixel in one

image to the other images such that the matches are consistent across the different feature scales. These matched correlation volumes are

then passed to the GRU refinement units, as shown in Fig. 2.43. Figure taken from [70], Fig. 2.

Despite the downsampling, RAFT generally captures small displacements through its unique iterative
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refinement approach, which works on the basis of Gated Recurrent Units (GRU) [71] that also are fed features

from a context encoder that uses the first frame as guidance, see Fig. 2.43. The context encoder plays a pivotal

role in enhancing the optical flow because it operates on the full resolution of the input images and not the

downsampled × 1

4
version that is used in the matching volume. The iterative refinement strategy of RAFT

uses these Gated Recurrent Units to incrementally refine the flow predictions. Each iteration has access to the

context encoder features which allows the model to improve the flow vectors, aligning them along precisely

to object boundaries.

⟨⋅, ⋅⟩
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Figure 2.43: The RAFT architecture for optical flow estimation. Figure taken from [70], Fig. 1. Note that the Gated Recurrent Units (GRUs)

[71] are a type of neural network architecture designed for sequence prediction tasks. They simplify the traditional LSTM [72] design by

combining the forget and input gates into a single “update gate,” and by merging the cell state and hidden state. This makes GRUs

computationally more efficient and easier to train, without sacrificing much of the capability to handle long-term dependencies in data,

which makes them a popular choice to model temporal dynamics.

This all-pairs correlation approach, coupled with the recurrent architectures ability to utilize global information

via the context encoder, sets RAFT apart in its capacity to handle dynamic scenes and complex motion

patterns accurately. The introduced RAFT architecture has been successfully applied to other tasks where

dense correspondence estimation is vital such as stereo-matching, and depth estimation [73, 74].

Summary Concluding with the optical flow section, we want to highlight the immense improvements that

have been made in the field of optical flow estimation with the advent of deep learning. To highlight this

advance, we compute the optical flow between two frames, showing both classical variational methods, and

deep learning based methods side by side, as well as the ground truth flow, see Fig. 2.44. The ability to learn

the optical flow estimation directly from the data has allowed for the development of more accurate and

robust optical flow estimation methods with RAFT style architectures in particular.
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Figure 2.44: The computation of Flow from images is an important topic in visual computing. Shown here are the improvements made

from 40 years of research, dating back to 1981. While contemporary methods are generally able to capture rough object boundaries with

high accuracy, they still struggle with very fine structures during motions, such as the hair of the person. The ground truth is shown for

reference.
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In the previous chapter we discussed the general principles and methods that are used to solve tasks such as

classification from data. We discussed simple cases such as classifying digits, or classifying points based on

their 𝑥, 𝑦 coordinates. However for applications that require a deeper understanding such as object detection,

semantic segmentation, and video understanding, better models, and a lot more data are required.

The goal of this chapter is to provide a meaningful introduction into the regime of large models and large

datasets, and to use the basic principles discussed in the previous chapter to build models that can deal with,

and understand image data.

3.1 Deep Learning for Video Understanding

We briefly touched on shallow networks which consisted of a few hidden layers at most, and introduced VGG16

in Sec. 3 as a deep network. The term deep refers to the depth of the network, which in that specific instance

was the number of layers in the network. The term itself is quite arbitrary and different subfields have different

interpretations of what constitutes a deep network. In any case, the depth of the network is a crucial factor in

the performance of the network, as it allows the network to learn hierarchical representations of the data,

which in turn can lead to better performance. Increasing the depth of the network, however, does introduce

some problems regarding the training procedures and data handling that need to be addressed. Additionally,

the increase in depth also generally increases the number of parameters in the network which leads to a

higher computational cost, and a higher memory requirement. We will discuss different architectures of

neural networks that have been proven instrumental in image and video tasks, the principles behind them,

and the training procedures that are used to train these networks.

As Image Understanding Tasks often predate their video counterparts, many lessons learned from networks

that operate on images are transferred to video networks. This chapter will introduce current and historic

developments in the state-of-the-art image understanding networks and discuss how they were adapted to

video understanding tasks.
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Figure 3.1: Chronological overview of models that introduced novel ideas used in deep learning applications and were successful,

enjoying a widespread adaptation and study in the community. Another interesting aspect is the slow transition and evolution

Convolutional Neural Networks to Transformer based architectures in the video domain.

3.2 Timeline of Video Action Recognition

The early stages of action recognition followed a similar path to that of Image Understanding where the features

that were used for classification were handcrafted and underpinned by sound mathematical formulations

and heuristics. An example of such features for Action Recognition are the Improved Dense Trajectories(IDT)

[75] which were used in conjunction with Support Vector Machines (SVMs) [76] for classification. Other

descriptors such as Space-Time-Interest points (STIP) [77], a natural extension of Harris Corners [78] in

3D, were also used in describing the occurrence of motion in videos, which could then be used for other

downstream tasks. These methods, however, were not without their limitations which posed significant

hurdles for large-scale deployment. Furthermore, these methods do not necessarily scale for downstream

applications as they rely on heuristically or mathematically sound formulations, which had to be tuned

according to the task. For a review of pre-deep learning approaches to action recognition see, e.g., [79].

Following the limitations of traditional feature-based techniques, the field of Action Recognition began to

pivot towards machine learning models that could learn representations directly from data, particularly

with the advent of Deep Learning. The introduction of Convolutional Neural Networks (CNNs) marked a

significant leap in this area.

Models

Convolutional Networks Convolutional Networks [99] (CNNs) had their breakthrough moment in the

field of computer vision with the introduction of AlexNet [5] in 2012, which won the ImageNet [8] Large Scale

Visual Recognition Challenge (ILSVRC) - a object recognition challenge, by a large margin. This model was

the first to demonstrate the power of deep learning in image classification. Following this success, CNNs for

video action recognition gained traction with the seminal introduction of models like DeepVideo[100] which

applied 2D CNNs to individual video frames, exploring temporal connectivity through fusion techniques.

Other works such as Two-Stream networks [26, 84, 89], processed appearance and motion information

separately. The motion was modeled with optical flow algorithms that were applied on consecutive frames

of the whole video. Most of that research was focused on the exact architecture and fusion methodology

between the Motion and Appearance stream. This line of work relied heavily on determining the correct way of

fusing the two distinct streams, with connections to biologically inspired models of the human visual system,

and ways to visualize the learned features in the network [101].

The research of action recognition relied on an explicit optical flow estimation in these models and used optical

flow estimators as a preprocessing stage. Effective action recognition necessitates a nuanced understanding

of motion, a dimension that static images or frame-by-frame analysis could not fully capture. By leveraging

optical flow, two-stream networks achieved widespread success. The simultaneous introduction of 3D

CNNs offered a conceptually parallel track of research, proposing a more integrated approach to model

spatio-temporal information within a unified framework with no explicit distinction between the spatial and

temporal dimensions. While these models showed promise, their practical deployment was hampered by

significant computational demands, leading to architectures that kept the computational cost manageable.

This resulted in novel approaches, such as Temporal Shift Modules (TSM) [92], which introduce temporal

dynamics into 2D CNNs with minimal computational overhead, and the exploration of internal flow-like
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representations [27, 88] aiming to bypass the need for pre-computed optical flow, reducing the computational

burden associated with two-stream optical flow networks.

Transformers The success of Transformers in Natural Language Processing (NLP) and image understanding

tasks has also influenced the architectures and techniques that are researched in video understanding tasks.

Transformers leverage their inherent capability to model complex dependencies across time and space,

with the added benefit of rudimentary in-built interpretability in the form of attention maps. The central

mechanism of self-attention applied on video data offers a flexible and powerful tool to capture the dynamics

of video sequences. This approach allows for direct modeling of interactions between any two positions

across a video’s spatial and temporal dimensions, irrespective of their distance. This would be impossible

for traditional convolutional networks that depend on network depth to increase their receptive field. The

introduction of the Vision Transformer (ViT) [102] model in 2020 marked a significant milestone in the

application of Transformers to image understanding tasks. It has since been adapted to video understanding

tasks with models such as the Multi-scale Vision Transformer (MViT) [95], the Video Vision Transformer

(ViViT) [29], the TimeSformer [103], and many more [104]. These models have shown promising results in

video action recognition tasks, with the potential to outperform traditional CNN-based models in certain

scenarios.

Recurrent Architectures Recurrent architectures, particularly Long Short-Term Memory (LSTM) [72]

networks, have also been used to some success in video understanding models [105]. LSTMs, with their ability

to capture long-term dependencies across time, also offer a promising avenue for modeling the temporal

sequences inherent in video data. Early implementations of LSTMs in the context of two-stream networks

attempted to aggregate frame-level features over time, aiming to produce a more coherent and comprehensive

understanding of video sequences. The primary factor why LSTMs are not widespread is that their training is

very brittle and they do not perform as well on transfer learning tasks. Some variants of Recurrent Networks

such as GRU [71] have, however, found their niche application in iterative refinement networks, as they are

common in optical flow [70].

We will limit our detailed discussion of Deep Learning models for Video Action Recognition mostly to

Convolutional Networks and Transformers, as they are the most widely used, and the best performing

models in the field. A timeline of significant models in Video Understanding and more specifically Action

Recognition is shown in Fig. 3.1.

Datasets

Datasets for Video Understanding have also evolved over time, with the introduction of large-scale video

datasets such as Kinetics [106], Sports-1M [100], and UCF-101 [107], which provide a rich source of labeled

video data for training and evaluation. We plot a timeline of datasets that have been important in advancing

the state-of-the-art in video action recognition in Fig. 3.3. Note that the 𝑦-axis, showing the number of videos

in the dataset, is displayed in 𝑙𝑜𝑔-scale. The scale of such datasets has only been possible by the widespread

adaption of video sharing platforms (mostly YouTube) with scraping of user provided tags and descriptions

to create the labels for the videos.

Similarly, the number of action classes has also steadily increased with most action recognition datasets

having more than 100 classes, see Fig. 3.2. This is important because backbones trained on such datasets are

often used for a wide variety of downstream tasks, as the features learned by the model are more general if

the dataset is also multi-faceted. This means that released models that are trained on such large datasets can

be used and fine-tuned for other downstream tasks; only the last classification layer needs to be retrained as

the features learned by the model are general enough. This trend has been a significant accelerator for the

development of deep learning models in the field of video action recognition, and has also been observed in

other fields such as image classification and object detection. Samples from some of the mentioned datasets

are shown in Fig. 3.4.
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Figure 3.2: Action Recognition datasets needed for deep learning approaches became widespread around 2011. The number of samples

in these datasets has been increasing over the years, as is needed for training deep learning models.
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Figure 3.3: At the same time as the number of samples in action recognition datasets has been growing, the number of distinct classes in

these datasets has also been increasing. This abundance of data and classes resulted from the abundance of videos freely available on

the internet representing a great accelerator for the development of deep learning models.

Video Length The number of frames varies significantly between videos in action recognition datasets,

with some videos containing only 10 to 20 frames while others spanning several seconds worth of video

material. This variability poses a challenge for models that have to process videos of different lengths, as they

must be able to effectively capture temporal dynamics regardless of the video’s duration. Common methods

to deal with differing video lengths often depend on the network architecture, with some models requiring

fixed-length inputs and others being able to process variable-length sequences, and then perform adaptive

temporal pooling in the bottleneck layers before the classification head. For models that require fixed-length

inputs, videos are often trimmed or padded to a specific number of frames, which can lead to information

loss or inefficiencies in processing. In particular, for video sequences where the action itself depends on just a

small number of frames, this can lead to a loss of information. An example of this can be seen in Fig. 3.4 for

the Diving dataset. If the frames are sampled in a way that do not show the direction of the rotation, which is

a crucial part in determining the action label, the model might not be able to correctly classify the action.

Evaluation Metrics For Action Recognition the most commonly used evaluation metric is the Top-1 Accuracy.

It measures the percentage of correctly classified videos, where the model’s prediction matches the ground

truth label. This metric is generally used in classification tasks, and sometimes is augmented with Top-3 and

Top-5 Accuracy to provide a more comprehensive evaluation of the model’s performance; this type of metric

is called the Top-𝑘 Accuracy and it measures the percentage of videos where the ground truth label is within

the top 𝑘 predictions of the model.
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Apply Eye Makeup Samples from UCF101 [30]

Body Weight Squats

Forward - 15som - NoTwist - Pike Samples from Diving48 [115]

Reverse - 15som - 25Twist - FREE

Blow Nose Samples from Kinetics400 [85]

Windsurfing

Playing Recorder Samples from HVU[116]

Painting

Figure 3.4: Samples from popular Action Recognition Datasets used for Video Understanding. Note that for the sake of brevity only 5

images are shown – this already highlights a hurdle as the length of individual videos is generally not constant and modeling long range

dependencies across time is a challenging task. Many sampling strategies for networks that have to deal with arbitrary amounts of

frames have been proposed, but the most common strategy is to limit the number of frames, and sample uniformly from the video until

the maximum number of frames that the architecture can handle is reached.
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3.3 Architectures

We offered a brief overview of the evolution of datasets and high-level ideas that were instrumental in the

development of image and video understanding models. This section aims to provide more insight into the

development of computational mechanisms and architectural designs, driven by the need to scale up neural

networks to handle large-scale image and video data.

Regularization Strategies for Deep Networks

The VGG16 [6] and AlexNet [5] models demonstrated substantial success across various vision tasks, fostering

further exploration into deep convolutional network architectures. The main idea behind increasing network

depth in both of these networks compared to shallow networks is to reduce the parameter count in individual

layers while enabling the model to learn more complex, hierarchical representations.

However, merely adding additional layers to a network does not inherently enhance performance. In fact,

deeper networks maintaining the traditional architecture pattern of convolution, pooling, and activation

layers often prove challenging to train. The reason for this is that the gradient in deep networks needs to be

propagated through many layers on operations which are multiplicative in nature. This leads to the gradient

being distributed (according to the chain rule, see Sec. 2.2, Fig. 2.14) across the layers which results in very

small values. As a result, meticulous hyper-parameter tuning and learning rate adjustments are critical to

optimizing these deeper models.

An elegant way to solve this is to introduce residual connections [7, 117] (or sometimes referred to as

Skip-connection) between individual stages of convolutional blocks; see Fig. 3.5. In this way, the gradient can

be distributed along the residual connections all the way to the early layers of the network, which allows

for the training of very deep networks. This is the main reason why the ResNet architecture has been so

successful in the field of image recognition, and has been the basis for many other architectures that have

been developed since.

𝑓1
𝑥0

𝑓2+

𝑥1

𝑓3+

𝑥2

+

𝑥3

Figure 3.5: Schematic of residual blocks. Each block consists of a function 𝑓𝑖 and a skip connection. The skip connection adds the input

to the output of the function 𝑓𝑖 . This allows 𝑓𝑖 to easily distrubute the gradient during backpropagation along the residual path, which is

an integral part of training deep neural networks as it effectively combats the vanishing gradient problem, as discussed in Sec. 3.

Mathematically, a residual connection in a neural network can be written as

xt = 𝑓𝑡−1(xt−1) + xt−1 , (3.1)

where 𝑓𝑡−1 is the convolutional block, xt is the output of the block, and xt−1 is the input to the block. The

residual connection is then added to the output of the block, through which the gradient is backpropagated

through the block and the residual connection. The idea here is to learn additive contributions to the

transformations, which also allows the network to learn the identity function when needed. As stated, the

upside is that the gradient is distributed additively around the block, and therefore more 𝑓 ’s can be stacked

without leading to vanishing gradients during backpropagation. This type of residual connections are used

in all types of architectures as they allow for training of very deep networks without the need for extensive

hyper-parameter tuning or different learning rates depending on the layer of the network, by allowing the

gradient to flow reliably through the network.
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(a) All Neurons Active (b) Dropout Regularization

Figure 3.6: During training, a fraction of neurons are randomly set to zero. Which particular neurons are set to zero varies every iteration.

This forces the network to learn redundant representations, which have proven to be beneficial for generalization.

Dropout Dropout, as introduced by Srivastava et. al [118], is a powerful regularization technique used in

training deep neural networks. Additionally, work of Gal and Ghahramani [119] established a connection of

dropout to a probabilistic view of model uncertainty. In practice however, dropout is used mostly to mitigate

the problem of overfitting. The idea is simple yet effective: During the training process, a randomly selected

subset of neurons in the network is ignored or dropped out at each iteration. This means that their contribution

to the activation of downstream neurons is temporarily removed, and their weights are not updated during

backpropagation for that particular mini-batch, see Fig. 3.6. The random elimination of a fraction of the

neurons forces the network not to rely on any single set of neurons, thus preventing them from co-adapting

too closely. Instead, the network develops more robust features that are useful in conjunction with many

different random subsets of the other neurons. This technique leads to a network that is less sensitive to the

specific weights of neurons, thereby enhancing its ability to generalize well to new data.
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Figure 3.7: Common Normalization Techniques for Deep Neural Networks. The labels on the axis represent the Batch (B), Channel (C),

Height (H), Width (W) and Time (T) dimensions of the input tensor. These techniques have proven to be necessary in training deep

neural networks.

Normalization Layers Normalization layers also play a important role in stabilizing and accelerating

the training process of neural networks. These layers adjust the input data within each batch to have a

mean of zero and a standard deviation of one, which helps in reducing internal covariate shift [120] — the

phenomenon where the distribution of network activations varies significantly during training, impeding

efficient learning.

Each normalization technique is designed to address specific challenges encountered during network training

and to improve the efficiency and effectiveness of learning.

▶ Batch Normalization Normalizes the input of a layer for each batch, stabilizing the learning process by

reducing the internal covariate shift.

▶ Layer Normalization Instead of normalizing across the batch, it normalizes across each feature map in

the data. This is particularly useful in situations where the batch size is small.

▶ Instance Normalization Applies normalization for each training example separately by computing the

mean and variance used for normalization from each individual sample. This is often used in style

transfer applications.
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▶ Group Normalization Divides the channels of the input into groups and normalizes each group

separately. This technique is particularly useful when the batch size is small or when the input data is

not well suited for batch normalization.

Figure 3.7 provides a visual representation of various normalization strategies applied across different

dimensions of input tensors. All normalization techniques share common benefits that contribute to the

overall performance of neural networks: By ensuring that the scale of inputs remains similar along a selected

dimension, it prevents the model from becoming overly sensitive to the scale of features.

Data Augmentation Data augmentation involves artificially expanding the size and diversity of training

datasets by generating transformed versions of existing data. This method significantly enhances the

robustness and generalization ability of machine learning models. The primary reason for data augmentation

is to prevent overfitting. Deep learning models, particularly those used in image and video classification,

possess a vast number of parameters, making them highly susceptible to memorizing the noise and details

in the training data, thereby failing to generalize to new data. Data augmentation artificially introduces

variability during training, enabling models to learn more generalized features rather than memorizing

specific data. This is illustrated in Fig. 3.8.

For image classification tasks, several augmentation techniques are commonly used to simulate the variability

that a model might encounter in a real-world scenario:

▶ Geometric Transformations include flipping (horizontally and vertically), rotating, and scaling images.

These transformations help a model learn to recognize objects regardless of their orientation and size

in different images.

▶ Random cropping of images helps the model focus on different parts of an image, enhancing its ability

to recognize objects no matter where they appear in the field of view.

▶ Color Alteration techniques such as adjusting brightness, contrast, saturation, and hue, or adding color

jitter, help in training models that are robust to varying lighting conditions and color variations.

▶ Adding random noise to images can make models more robust against different types of sensor noise

or compression artifacts in real-world digital images.

Concerning video action classification, data augmentation extends beyond image-specific techniques due to

the temporal nature of video data. In addition to the spatial augmentations applied on a per-frame basis,

temporal augmentations are crucial for improving model performance:

▶ Temporal Cropping, similar to image cropping but applied across frames, helps the model learn to

recognize actions from different segments of the video.

▶ Temporal Scaling speeds up or slows down the video playback, training the model to recognize actions

that occur at different speeds.

▶ Temporal Jittering involves shuffling frames slightly within a video sequence.

Incorporating these spatial and temporal techniques effectively can significantly enhance the ability of a

model to understand and classify complex activities in videos, making it adept at handling the intricacies

of real-world video data. While data augmentation is beneficial, it must be applied judiciously. The types

of chosen augmentations should reflect realistic variations that are likely to be encountered in the specific

application for which the model is being developed. Over-augmenting can lead to a situation where the

transformed images no longer represent realistic samples, which could deteriorate model performance on

actual data.

Deep Convolution Neural Networks (CNN)

Residual Connections in Convolutional Neural Networks In the context of CNNs, a complication arises

when the channel dimensions of the input and output of a convolutional block differ, thereby preventing the

direct application of residual connections. To solve this problem, the input is passed through a convolutional

layer with a kernel size of 1 × 1 (without bias) to match the dimensions of the output of the convolutional
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Figure 3.8: Data augmentation modifies the data distribution to increase model robustness against noise by allowing the model to fit the

data-manifold with specified invariances. The illustration above adds Gaussian noise, denoted as N(0, ·), to each pixel of the input image

independently. Each axis in the figure (𝑥1 and 𝑥2) represents a pixel value from the flattened image, which for a 224 × 224 × 3 image,

results in a 150528-dimensional vector. Each point in this high-dimensional space corresponds to a potential image in the dataset. Other

augmentation techniques like flipping, rotating, scaling, cropping, and color jittering adjust the data in this space creating distinct

"islands" that correspond to the same object class. This figure also illustrates again the Curse of Dimensionality (see Sec. 2.1) and the

issues that can arise with large quantities of data.

block. This is called the identity mapping; see Fig. 3.9. In scenarios where the dimensions of the input 𝑥 and

the function output 𝑓 (𝑥) naturally align, the network employs the formulation 𝑜𝑢𝑡 = 𝑥 + 𝑓 (𝑥). Here, 𝑓 (𝑥)
acts as a residual correction to 𝑥, allowing the network to possibly change 𝑓 (𝑥) toward zero when 𝑥 already

represents the desired output. Conversely, when the dimensions of 𝑥 and 𝑓 (𝑥) do not align directly, the

network introduces a transformation 𝑊𝑥, where 𝑊 denotes the weights of the 1 × 1 convolution used to

match the channel dimensions of 𝑥 to those of 𝑓 (𝑥). This transformation ensures that𝑊𝑥 remains similar

to 𝑥, but adjusted for optimal addition to 𝑓 (𝑥). Throughout training, the model learns to treat 𝑓 (𝑥) as the

appropriate residual addition to 𝑊𝑥 instead of directly to 𝑥. The use of 𝑊 is essential when there is a

mismatch in channel dimensions. Additionally, convolution operations without padding typically reduce the

spatial dimensions of 𝑥. To counteract this, padding can be applied to ensure the spatial dimensions of 𝑥

align with those of 𝑓 (𝑥). Details on padding were discussed in Sec. 2.

These are the main ideas behind the successful ResNet architectures [7]; we list the most common ResNet

architectures in Table 3.1, which differ in the number of convolutional layers. Each variant scales in complexity,

adjusting the depth and the number of blocks at each convolutional stage. Each stage typically doubles the

number of filters while reducing the spatial dimension by half, maintaining a constant computational cost

per layer. The use of 1 × 1 convolutions, often referred to as bottleneck layers in deeper ResNets (ResNet50

and above), serves to reduce the dimensionality before applying more computationally expensive 3x3

convolutions. The incremental complexity is balanced by the use of residual connections, ensuring that

even as the network depth increases, training of the network remains stable. This facilitates deeper network

architectures without vanishing gradients or degraded training accuracy.

Visualizing Learned Convolutional Filters Visualizing the first layer in a CNN is straightforward, as the

kernels are applied directly to the input data. In the case of images, the input data is of a 3 × ℎ × 𝑤 shape,

where ℎ and 𝑤 are the height and width of the image, and the other dimension containing the red, green,

and blue channels of the image. In the case of ResNet-101 the first layer has 64 kernels, each of shape 3 × 7 × 7

which can be displayed as a 7 × 7 rgb image, see Fig. 3.10.

Visualizing deeper layers of a convolutional network in terms of the filters that are learned is difficult and

does not yield meaningful insights into the learned features. This is due to the fact that the filters themselves

do not operate on image data, but on activation maps that are a product of previous convolutional filters. As

the depth in a neural network increases, the features extracted become more abstract, integrating simple
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𝑐𝑖𝑛 ≠ 𝑐𝑜𝑢𝑡 Matching 𝑐𝑖𝑛 to 𝑐𝑜𝑢𝑡

Figure 3.9: The implementation of residual connections in convolutional neural networks requires adaptation as the input and output

dimensions before and after the convolutional block may differ. In the case where the number of input channels 𝑐𝑖𝑛 does not match the

number of output channels 𝑐𝑜𝑢𝑡 , a 1 × 1 convolutional layer with 𝑐𝑜𝑢𝑡 number of filters is applied to the input to match the dimensions

of the output. This transformation ensures that the residual connection can be added to the output of the convolutional block. In the

1 × 1 convolutional blocks the bias is also often omitted and the transformation can therefore be written simply as𝑊𝑥 with𝑊 being the

weights of the 1 × 1 convolution. This type of adaptation of 𝑥 is often referred to in the literature as identity mapping [7]. Also note that

the spatial dimensions of the input and output are often kept the same by applying zero padding to the input.

Table 3.1: Popular ResNet Architectures used for Image Recognition tasks. Each Layer is seperated into stages. For each stage, the

number of blocks and the number of times each block is repeated is shown. The output size of each stage is also shown.

Layer Output size ResNet18 ResNet50 ResNet101

7×7, 64, stride 2

conv1 112×112

3×3 Max. Pool, stride 2[
3×3, 64

3×3, 64

]
× 2

[
1×1, 64

3×3, 64

1×1, 256

]
× 3

[
1×1, 64

3×3, 64

1×1, 256

]
× 3conv2 56×56

conv3 28×28

[
3×3, 128

3×3, 128

]
× 2

[
1×1, 128

3×3, 128

1×1, 512

]
× 4

[
1×1, 128

3×3, 128

1×1, 512

]
× 4

conv4 14×14

[
3×3, 256

3×3, 256

]
× 2

[
1×1, 256

3×3, 256

1×1, 1024

]
× 6

[
1×1, 256

3×3, 256

1×1, 1024

]
× 23

conv5 7×7

[
3×3, 512

3×3, 512

]
× 2

[
1×1, 512

3×3, 512

1×1, 2048

]
× 3

[
1×1, 512

3×3, 512

1×1, 2048

]
× 3

1×1 Avg. Pool→ Number Of Classes: FC→ SoftMax

Figure 3.10: Visualization of the First Convolutional Layer Kernels in ResNet-101: This figure showcases a selection of kernels from the

first convolutional layer of a pretrained ResNet-101 model, highlighting their diversity and specificity in capturing fundamental visual

features such as edges and blobs. These initial filters are directly applied to the raw input images, allowing them to learn basic patterns

that are universally present in natural images, and in the following represent the input image in terms of these filters. The clarity and

interpretable nature of these filters—often resembling traditional oriented or isotropic bandpass operators are a consequence of their

position in the network’s hierarchy, operating on the pixel level of the input data. In contrast, kernels in deeper layers of the network

process features that are increasingly abstract and distanced from the raw pixel data. As a result, filters beyond the first layer cannot be

directly displayed to gain meaningful insights. This reflects the hierarchical feature extraction process inherent in deep convolutional

neural networks, where initial layers capture simple, low-level features and deeper layers integrate these into more complex, high-level

representations needed for visual tasks.
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patterns from earlier layers into more sophisticated representations that might correspond to parts of objects

or complex arrangements of features. Activation Maximization, as discussed in Sec. 3 is one notable method

that allows us to inspect the response of particular layers in the network indirectly, by generating input images

that maximize the activation of a particular layer or neuron within the hierarchy. In Fig. 2.32, we see how

Activation Maximization is applied on the output layer (the logits) of a trained neural network to generate

images that maximally activate a specific class. This resulted in images that look like the class itself. However

it can also be applied on intermediate layers of the network to generate images that maximally activate that

specific layer. This can be implemented by summing over the activations of all neurons in a specific layer:

𝐴𝑙( 𝑓 (𝑥;𝜃)) =
∑
𝑖

ℎ 𝑙𝑖 ( 𝑓
𝑙−1(𝑥;𝜃)) (3.2)

where 𝐴𝑙 is the activation of layer 𝑙, computed by the hidden units 𝑖 in the full layer ℎ 𝑙 . The input to ℎ 𝑙

are the previous layers of the network, abbreviated by 𝑓 𝑙−1(𝑥;𝜃), compare with Eq.2.20 in Section 3. The

weights, 𝜃, are the parameters of the network which are not updated. Then, gradient ascend can be applied

to obtain the updated 𝑥, often referred to as 𝑥∗. Note that it is necessary to regularize the updated 𝑥∗ with

methods as described in Sec. 3 to prevent degenerate solutions such as adversarial examples. Samples of

this process for different layer depths are shown in Fig. 3.11 for the same ResNet-101 model where the first

convolutional filters were visualized directly (Fig. 3.10). The generated images show varying degrees of

complexity, and show that early layers in the network capture patterns such as orientation of edges and blobs,

whereas deeper layers capture more complex and abstract features that are plausibly useful for classification.

The output of the last convolutional layer before the fully connected layers looks, indeed, like templates of

the objects that the network is trained to recognize. There exist other slightly more advanced methods such

as DeepDream [121] and DeepVis [122], which do not operate directly on the image space of 𝑥∗ but rather a

feature representation of it.

Computational Cost The VGG16 model, a significant advancement in deep learning, demonstrates that

increasing network depth is an effective strategy to improve performance, particularly in tasks requiring low-

level feature extraction like image matching, stitching, and rectification. Although deepening networks can

lead to better outcomes, the rise in computational costs does not always correlate with the increase in benefits.

This discrepancy has led to the development of various strategies aimed at reducing the computational

demands of deep neural networks.

The inception block, tackles the challenge of efficiently capturing image features at varying scales within

a single convolutional layer. By integrating multiple filters of different sizes (1 × 1, 3 × 3, and 5 × 5) and a

max-pooling operation, this module allows for the extraction and merging of a diverse range of features

in parallel, see Fig. 3.12. The parallel structure minimizes additional computational costs while processing

spatial hierarchies between features at different scales. The outputs from these paths are concatenated;

commonly multiple inception blocks are stacked to form the Inception architecture, which has been used in

various models such as GoogLeNet [123] and InceptionV3[124].

Spatio-temporal Convolutional Networks for Video Understanding Many of the ideas that have been

developed for image classification have been adapted to video understanding with great success, and have

historically been the basis for many of the models in the field. The defining feature of video data is that it has

a temporal dimension, which means that the network must be able to capture the temporal information in the

video input. In the case of convolutional neural networks, aggregating this temporal information can be done

in a number of ways. In Fig. 3.13 different ways of aggregating spatio-temporal information with convolutions

is shown; 3D convolutions operate at the same time on the spatial and temporal dimension. Many popular

architectures [81, 85, 91] that serve as reliable backbones for feature extraction and action recognition have

been built on top of 3D convolutions. However, 3D convolutions are computationally expensive, and do not

scale well with the number of frames in the video. One way to reduce the number of parameters required is

to split the 3D convolution into a 2D convolution that operates on the individual frames, followed by a 1D
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convolution that operates on the temporal dimension. This is the idea behind the R(2+1)D network [88] and

other approaches that improve upon it.

Two-Stream Networks An alternate approach to capturing the temporal information in videos is to use two

separate streams of convolutional networks, one that captures the spatial information and one that captures

the temporal information. The two streams are then combined either with continuous fusion throughout

the layers, or late in the network, termed late fusion. This idea was first explored in depth by Simonyan and

Zisserman [26] in the context of action recognition. Many of the two-stream approaches relied on explicit

pre-computation of optical flow that was used as input in the motion stream. Some approaches used only

a single frame in the appearance stream, and 2D convolutions in the motion stream along the channel

dimensions, while other approaches combined the two-stream approach with 3D convolutions as well. Later

approaches such as SlowFast networks [27], see Fig. 3.15, also used two streams but did not compute optical

flow explicitly before passing it into the motion stream. Instead they use two 3D convolutional streams that

capture the input video at different temporal sampling rates and with different capacities and spatio-temporal

extents of the convolution kernels to facilitate different representations in the two streams. The schematic of

this SlowFast architecture is shown in Fig. 3.15. It is important to note that the temporal stream is sampled

at a higher rate than the spatial stream. This allows the network to capture the temporal information at a

higher resolution, which is crucial for capturing fast motion in videos. The two streams are then combined in

a fusion layer to produce the final output.

Learned Spatio-temporal Patterns Similarly as in the case of the ResNet-101 model, we can apply activation

maximization to the I3D network, which is a 3D convolutional network that has been trained on the Sports1M

dataset. The results of this are shown in Fig. 3.16. In the early layers of the network, we see simple moving

patterns such as scintillating edges, whereas in the deeper layers we see more complex motion patterns such

as revolutions, rotations, and diverging patterns. Since the I3D network uses 3D convolutional kernels, the

spatial and temporal information is captured at the same time, which makes it difficult to observe only spatial

or only temporal patterns by themselves. The I3D network uses a fixed input length of 16 frames, which

means that the resulting video that can be displayed also consists of 16 frames. Additionally to the spatial TV

regularization that was used in the ResNet-101 model, it is also necessary to regularize the temporal dimension

to prevent degenerate solutions. This also highlights one of the downsides of Activation Maximization as the

space of solutions is being limited by the choice of regularizer.
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Figure 3.11: Activation Maximization on select filters of a ResNet-101. We visualize 4 filters at 5 different depths, ranging from early to

late layers in the network. Note the increasing complexity of the patterns as we move deeper into the network, where the output of

the last convolutional layer before the fully connected layers does, indeed, look like templates of the objects the network is trained to

recognize. This again harkens back to the idea of the feature extraction serving the purpose of extracting templates which are then used

in a linear classifier.
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Figure 3.12: Schematic of the Inception architecture [124] that uses Inception blocks. This diagram illustrates the parallel convolutional

and pooling paths which are concatenated to form a single output, enhancing the network’s ability to handle multi-scale information

within an image.

(a) 2D Convolution (b) 3D Convolution (c) 2D + 1D Convolution

Figure 3.13: Comparative Visualization of Convolutional Techniques: 2D, 3D, and (2D+1D) Convolution. This figure illustrates the core

differences between three convolutional strategies used in neural network architectures for processing spatial (2D) and spatio-temporal

(3D) data. The 2D convolution operates on two-dimensional input, effectively handling spatial features within images by applying filters

across the height and width dimensions. The 3D convolution extends this concept to incorporate the temporal dimension, applying filters

across the height, width, and time (or depth), making it suitable for video or volumetric data analysis. However, the 3D convolution

comes with significantly higher computational costs due to the increased dimensionality. The (2D+1D) convolution, as a computational

optimization, first applies a 2D convolution across the spatial dimensions to capture spatial features, followed by a 1D convolution

across the temporal dimension. This sequential approach dramatically reduces computational requirements compared to direct 3D

convolution, offering a more efficient way to capture both spatial and temporal information without the full computational burden of

traditional 3D convolutions.

Prediction

Single Frame

Spatial Stream
Conv 1 Conv 2 Conv 3 Conv 4

Conv 5
FC 6 FC 7

Conv 1 Conv 2 Conv 3 Conv 4
Conv 5

FC 6 FC 7

Multiframe Optical Flow

Temporal Stream

Input Video

Figure 3.14: The original two-stream network introduced by Simonyan and Zisserman [26] for action recognition. The network consists

of two separate streams, one that captures the spatial information and one that captures the temporal information. The spatial stream

operates on a single "Anchoring" frame of the video sequence and is a standard 2D convolutional network. The motion stream takes

as input the precomputed 𝐿 optical flows between neighboring frames in the video. The 𝑑𝑥 and 𝑑𝑦 components of of the optical flow

are stacked together to form a 2 × 𝐿-channel input that is passed through another 2D convolutional network to capture the temporal

information. The two streams are processed separately and their SoftMax-ed outputs are combined in a fusion layer to produce the final

output. The depicted figure is taken from the original paper Fig. 1 [26].
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Prediction

Slow Stream

Fast Stream

...

Figure 3.15: This architecture utilizes convolutional neural networks across two distinct streams, each using a different temporal

sampling rate. The slow stream is designed to capture spatial information by processing fewer frames, while the fast stream, which has

fewer parameters to ensure efficiency, captures temporal dynamics by sampling at a higher rate. This dual-stream approach allows for

the efficient processing of both spatial and temporal aspects without the need for explicit optical flow estimation. Additionally, the

capacity in each stream is strategically chosen to optimize the representational capabilities and computational efficiency. Figure adapted

from [27].
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Figure 3.16: Activation maximization applied to I3D network trained on Sports1M. Depending on the target layer in the network - the

layers’ depth increases along the 𝑦-axis, we obtain different video, which we display here as image sequences along the 𝑥-axis. In

early layers simple moving patterns such as scintillating edges can be seen, whereas deeper layers show more complicated motion

patterns such as revolutions, rotations and diverging patterns. Since in the I3D uses 3D convolutional kernels, the spatial and temporal

information is captured at the same time, which makes it difficult to observe only spatial or only temporal patterns by themselves.
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Transformers

So far, we discussed convolutional neural networks, which are the backbone of many successful models in

computer vision. However, another architecture called the transformer has emerged as a powerful alternative

to CNNs for a wide range of tasks, including image recognition, natural language processing, and video

understanding. First introduced in the context of natural language processing by Vaswani et al. [125], the

transformer architecture is based on the idea of intrinsically allowing the model to capture long-range

dependencies in the input data within one layer, without having to rely on network depth to increase its

receptive field sufficiently, see Fig. 3.17. In this section, we will provide an overview of the transformer

architecture, its key components, and discuss how it can be applied to video understanding tasks.

(a) Convolutional Neural Network (b) Transfomer

Figure 3.17: The receptive field of a CNN increases with network depth, and while techniques like dilated or strided convolutions can

enhance this expansion, a certain level of depth is still essential for the feature representation to encompass the entire input. In contrast,

transformers inherently possess a global receptive field, allowing them to access all input data simultaneously from the outset. However,

these differences are worth discussing as both approaches have upsides and downsides; CNNs, with their local receptive fields, naturally

introduce useful inductive biases, which can be beneficial depending on the task - for details refer back to Sec. 2. This difference in

receptive fields also explains why transformers, despite their global view, tend to be more data-intensive, requiring substantial datasets

to train effectively as the inductive biases of a comparable CNN need to be learned from data.
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(b) Proportional Retrieval

Figure 3.18: A common challenge across disciplines, particularly in computer science, is the retrieval of information from extensive

databases. Traditional relational databases, for example, might utilize bag-of-word descriptors to construct query-key pairs, but such

queries merely return the value associated with a directly matched key, as illustrated in figure (a). In contrast, a more sophisticated

approach might involve proportional retrieval, where a mechanism computes the similarity between the query and all keys. The results

are then aggregated into a weighted sum of values based on this similarity, as depicted in figure (b). This concept of aggregating and

weighting response values forms the foundational principle of the transformer module.

The Attention Module At its core, the attention mechanism in machine learning architectures is a method

to dynamically relate different parts of input data to each other.

Relational systems rely on exact matches where a query directly retrieves a corresponding value through a

key. This is illustrated in Fig. 3.18a and typically uses descriptors like bag-of-words for feature representation,

ensuring a direct retrieval of the value connected to the precise key match. Conversely, attention mechanisms

allow for proportional retrieval - as shown in Fig. 3.18b. This method calculates a similarity score between

each key and the query using a predefined similarity function. These scores are then applied to adjust

the weighting of values associated with each key. A normalization step, often through a SoftMax function,

ensures these weights sum to one, reflecting the relative importance of each key in relation to the query.
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Figure 3.19: Building blocks of the transformer architecture. The attention mechanism (a) is the smallest unit of computation that shows

how a single key and query are matched together to allow for proportional retrieval of the 𝑣𝑎𝑙𝑢𝑒 that corresponds to that key. After the

"SoftMax" block, it is possible to inspect the attention of the query to all other keys. The multihead attention block (b) is a parallelized

version of the attention block, where the input is split into multiple heads and the attention is computed in parallel. The different

projections learned allow the different heads to focus on different aspects of the input sequence. The encoder block (c) is finally the

combination of the multihead attention block and different mechanisms such as the feed forward network and the residual connections.

There is also the decoder block that can be used especially for tasks that require cross attention (i.e., the query is generated from a

different input than the key and value). For the tasks that we are interested in, the encoder block is sufficient, as we do not employ

multimodal input. Figure inspired by [126], Fig. 12.6.

More concretely, the attention in a transformer is computed in the transformer architecture is as follows: The

input is first tokenized and then transformed through linear projections into three vectors: the query, key,

and value. In the context of natural language, the tokenization happens through the use of word embeddings

which are then passed through (three separate) linear transformation to get the query Q, key K, and value V.

In the case of images, the image is divided into patches, which are then flattened into a sequence of vectors,

that are then passed similarly through linear transformations, again resulting in Q,K,V. This highlights one

key property of transformers, and their adaptation to various different domains; the type of input data that

the model can handle mostly comes down to the tokenization function. The transformer architecture and

attention mechanism are general purpose compute structures, agnostic to input data as long as a tokenization

mechanism can be used to split the input data into smaller chunks. This is in contrast to convolutional neural

networks, which are designed to operate on grid-like data such as images, and recurrent neural networks,

which are designed to operate on sequential data such as text.

The general formulation of the attention mechanism for Q,K,V is given by:

Attention(Q,K,V) = SoftMax

(
QK⊤

)
V. (3.3)

However in practice the attention mechanism is often scaled by the square root of the dimensionality of the

key, which is denoted as 𝑑𝑘 :

Attention(Q,K,V) = SoftMax

(
QK⊤√
𝑑𝑘

)
V. (3.4)

Scaling is done to prevent the dot product from individual Q,K pairs from becoming too large, which would

result in one of the terms dominating the SoftMax function, and assigning a weight of 1.0 or close to it to the

corresponding value. This would effectively reduce the attention mechanism to a simple lookup mechanism,

removing the contextualization that can happen through proportional retrieval, cf. Fig.3.18b. The scaling

ensures that the SoftMax function is more evenly distributed across the values, allowing the model to learn

more complex relationships between the query and the keys.
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Before we continue with additional architectural details of the transformer, we will discuss the attention

mechanism more abstractly. By splitting the input data into queries, keys, and values, the attention mechanism

allows the model to compare a learned representation of a token (the query) with other learned representations

of the entire input data (the keys). The result is a similarity score between the query and each key, which is

used to weight the corresponding values. This similarity allows the model to aggregate information that, in

turn, was also built on the context of the entire input. An example of such contextualization can be seen

in the canonical example from Natural Language processing; "Bank of the river" vs. "Bank account". The

word "Bank" has different meanings depending on the context of the sentence, and the attention mechanism

allows the model to learn these relationships by comparing the query "Bank" with the keys "of the river" and

"account". The attention mechanism then weights the value "of the river" higher when the query is "Bank" in

the context of the sentence "Bank of the river", and weights the value "account" higher when the query is

"Bank" in the context of the sentence "Bank account". A diagram of the attention mechanism, more specifically

the scaled dot product attention, as discussed in Eq. 3.4, is shown in Fig. 3.19a. This dot product self attention

block serves as a building block for parts of the transformer architecture, and can be written as

Q = XW(𝑞)

K = XW(𝑘)

V = XW(𝑣) ,

(3.5)

where X is the input token, and W(𝑞) ,W(𝑘) ,W(𝑣) are the linear transformation weights for the query, key, and

value respectively.

Multi-headed attention is a straightforward extension of the scaled dot product attention. Attention is com-

puted in parallel blocks where the input tokens are transformed by different weight matrices W(𝑞)
𝑖
,W(𝑘)

𝑖
,W(𝑣)

𝑖

to form the Q,K,V in the 𝑖th attention head. The resulting Q,K,V are concatenated to form the output of

the multi-headed attention block, see Fig. 3.19b. In convolutional networks this is conceptually similar to

increasing the number of filters in a convolutional layer, which allows the network to learn different features

in parallel.

These multi-headed attention blocks are combined with skip-connections (Section 3.3) and layer normalization

blocks to form Encoder Blocks, Fig. 3.19c. As the input and output dimensions of an Encoder Block are identical,

they can be stacked directly on top of each other to form the encoder part of the transformer architecture.

This modular design is quite flexible and allows for the easy addition of more encoder blocks to increase the

depth of the network.

The Vision Transformer The Vision Transformer (ViT) is a Transformer that has been adapted for image

recognition tasks. The key idea behind the ViT is to treat an image as a sequence of patches, which are

then flattened and passed through the transformer, see Fig. 3.20. This is in contrast to convolutional neural

networks, which operate directly on the pixel data of the image. The ViT architecture consists of an encoder

part, which is made up of a stack of encoder blocks, and a classification head that is attached to the output of

the encoder. The encoder blocks are made up of multi-headed attention blocks, normalization blocks, and

feedforward blocks.

This means that the queries, keys and values are computed from each of the tokens in the sequence, and the

attention mechanism is applied to each token in parallel. The attention to one Query can then be visualized as

it is the dot product of the Query with all the Keys. When the Query and the Key are created from the same

token, we speak of self-attention; however if the Query and the Key are created from different tokens, the

term of cross-attention is used. A schematic of the computation for both self- and cross-attention is shown

in Fig. 3.21. We will focus on self-attention mechanisms as we will use transformer architectures to extract

features and to classify images and videos. Cross-attention is typically used in tasks where the input data is

of different modalities, such as in the case of image captioning, where the image and the text are passed

through the transformer, and the model must learn to attend to the relevant parts of the image to generate the

caption. The blocks of the transformer that use cross-attention are generally referred to as Decoder Blocks.
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Figure 3.20: The ordering of the tokens before they are passed to the transformer. In the case of the common ViT16×16, the image is

divided in patches where each patch has the dimensions of 16× 16 pixels. Commonly, the input images are rescaled to a size of 224× 224

which gives a total of 14 × 14 = 196 tokens. The tokens are then arranged, row by row, and reshaped into from a 16 × 16 patch to a

256 × 1 vector, before being passed into the linear projection layers that feed into the transformer. Figure adapted from [126], Fig. 12.23.

Positional Embeddings Another interesting aspect that can be seen from the schematic, Fig. 3.21, is that

every token is treated the same, independently of its position in the sequence. However, we do know that

information about the relative or absolute positions of patches in the image are vital for understanding

the spatial relationships and objects within an image. To allow the transformer to distinguish between the

position of each token in the image, positional encodings are added to each token. The positional encodings

are either fixed, or learned during training, and are added to the input tokens before they are passed through

the transformer. An example of how the positional encoding is constructed is shown in Fig. 3.22. In the case

of fixed positional encodings, sine and cosine functions with fixed frequencies as basis are used. In particular,

the positional encoding for a position 𝑡 and dimension 𝑖 is defined as:

𝑃𝐸(𝑡 ,𝑖) =

{
sin (𝜔𝑘 · 𝑡) if 𝑖 even

cos (𝜔𝑘 · 𝑡) if 𝑖 odd

. (3.6)

The purpose of using this specific formulation is to ensure that the encoding varies smoothly and uniquely

for each position 𝑡, providing the model with a way to discern the relative or absolute positioning of tokens

in a sequence.

In the case of the vanilla Vision Transformer (ViT) [127] the images are rescaled to a size of 224×224 pixels, and

split into 16× 16 sized patches, which results in 14× 14 = 196 tokens. This means that the positional encoding

must be able to distinguish between 14 × 14 = 196 positions. Furthermore, an embedding dimensionality

of 768 per token is used. As the flattened image patches have a dimensionality of 16 × 16 = 256 and the

embeddings have a dimensionality of 768 the resulting total token size is 256 + 768 = 1024 which is then

passed through the transformer.

It is also possible to have non-fixed, learnable positional embeddings instead of the fixed positional embeddings.

In the following paragraph we will discuss some methods of inspecting the inner workings of the vision

transformer which will also include differences between fixed and learnable positional embeddings.

Classification with the Vision Transformer We have now gathered all the required ingredients to build

a vision transformer, and can now discuss how a vision transformer can be used for image classification.

The input image is first split into patches, which are then flattened and passed through the transformer.

In addition to the patch embeddings, an additional token called [CLS] (short for classification), which

contains the zero vector, is added to the input tokens. After the preparation of the tokens, the input tokens

are passed through the transformer, which consists of a stack of encoder blocks.

The output of the transformer at the position of the [CLS] token is passed through a classification head,

which is a linear layer that maps the output of the transformer to the number of classes that the model should

classify the image into, identical to earliest classifiers discussed in Sec. 2.2. As the tokens aggregate more

information by contextualization through self-attention, the representation of each token and the similarity

to other tokens in the image changes. Because the [CLS] token does not belong to any particular patch in the
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(b) Cross Attention

Figure 3.21: The attention computed of the first query 𝑞1 with respect to all keys 𝑘1 , 𝑘2 , . . . , 𝑘𝑚 . As each 𝑞1 × 𝑘𝑖 dot product gives a

scalar, the result can be reshaped back again to the (tokenized) image dimensions. The size of the dots in the right image is proportional

to the dot product value, and shows how much the query 𝑞1 attends to each key 𝑘𝑖 . In the context of Vision Transformers the visualized

query is often the [CLS] token, and the keys are the image patches. Some applications for cross attention include semantic segmentation,

depth estimation. It is noteworthy that it is not necessary to have the same number of queries and keys, as the attention mechanism can

be applied to any pair of sequences, nor that they have to come from images.
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(c) 𝑆𝑖𝑛 part

Figure 3.22: Positional embedding is an important aspect of the transformer architecture. The overall schematic of how to create the 𝑠𝑖𝑛
and 𝑐𝑜𝑠 embeddings is shown in (a). A fixed number of 𝑠𝑖𝑛 and 𝑐𝑜𝑠 with increasing frequency are used to determine the position of the

token in the sequence. Figures (b) and (c) show the 𝑠𝑖𝑛 and 𝑐𝑜𝑠 embeddings for a sequence of length 128 respectively. Often times

however the positional embedding is learned as well.
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ClassifierImage Token Order

Positional Encodings

Vision Transformer

Figure 3.23: Vision Transformer (ViT) architecture. The vision transformer is a natural extension of the transformer to the domain

of images. The input image is split into patches (16x16) which and then flattened into a sequence of vectors; an additional positional

encoding is added to each token as the transformer does not have any inductive bias for the spatial structure of the input. An important

aspect for image classification is the addition of another token, often called [CLS] or * token. Initialized with a learnable embedding, and

initialized with a fixed value, this token undergoes the same transformations in each encoder block as the other tokens generated from

the image itself. The attention mechanism is therefore also applied on the [CLS] token. For tasks of image classification it is the output of

the [CLS] token that is used for the final classification. This leads to global contextual information important for the classification of the

image to be stored in the [CLS] token, and by extension, the attention maps that lead to the [CLS] token.

input image, and is used for classification, information regarding the class of the image is aggregated in it.

This leads to the effect that the attention of the [CLS] token coincides with image regions that are important

for the classification task. The full architecture of the vision transformer is shown in Fig. 3.23.
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Figure 3.24: Attention of the Vision Transformer with respect to the [CLS] token. The attention of the [CLS] in the last encoder block is

visualized as a heatmap, and overlayed on top of the input image. The attention of the [CLS] token can be used to understand which

parts of the input image are important for the classification task. Figure adapted from [127], Appendix D, Fig. 14.

Visualizing Aspects of a Vision Transformers In the case of CNNs we visualized the first convolutional

kernel weights directly, and those in deeper layers of the network indirectly through Activation Maximization.

In the case of the vision transformer such workarounds are not always necessary to gain insight into what is

useful for the final classification. The [CLS] token, which is appended to the input sequence of image tokens,

is of particular interest in that case. As previously discussed, it is this [CLS] that accumulates important

information about the image, because it is used in the final classification step. The attention of the [CLS]

token can be used to understand which parts of the input image are important for the classification task.

Figure 3.24 shows the attention of the [CLS] token in the last encoder block visualized as a heatmap, which

is overlayed on top of the input image. Note that the attention map has a lower spatial resolution than the

input image, as the attention is computed over the tokens (patches of 16 × 16 pixels), and not the pixels of the

image. However it is commonplace to upsample the attention map to match the size of the input image so

that they can be overlayed.

Average Attention Distance It is also of interest to investigate what the average attention distance for tokens

inside of a transformer is. Results about the average attention distance can be used to understand how the

attention is spread across the tokens in the input sequence. The average attention distance is computed by

passing a large number of images through the transformer, and then computing the attention distance for

each token to all other tokens in a particular head, for a particular layer. We define the attention distance

as the weighted average of the attention weights of all token to all other tokens. We also choose to display

the average attention distance with respect to a particular encoder block (depth) and average over all heads

in the transformer, as is shown in Fig. 3.25. The 𝑥-axis of our visualization shows the depth of the encoder

block, and the y-axis the mean attention distance. The heatmap shows that the attention distance is not

uniform across the depth of the transformer, and that the attention is spread across the tokens in the early

layers, and becomes more focused in the later layers. This is in contrast to convolutional neural networks,

where the receptive field of a neuron is fixed and does not change across the network depth. In other terms,

deeper layers in the network become more selective in the tokens they attend to. In early layers the mean

attention distance is quite large, and is spread across the tokens, meaning that local and global information

is being aggregated. In later layers the attention distance is not spread, and becomes larger, showing that

later encoder blocks are quite picky with respect to which tokens they focus on. This is in stark contrast to

convolutional neural networks, where the receptive field of a neuron is fixed and does not change across the

network depth.

We can also visualize the embedding layer through which the image patches are linearly projected, see

Fig. 3.26. To better understand the linear projection layer in terms of its influence on image patches we can

use the Singular Value Decomposition (SVD) to decompose the weight matrix of the projection layer. The

SVD decomposes the weight matrix into three matrices, such that

X = UΣV⊤
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Figure 3.25: The attention distance across the block-depth of a vision transformer [127] is not uniform. We evaluate it by passing 1000

test images from ImageNet [128] through the vision transformer and then calculate the attention distance for all tokens to all other

tokens in a particular head, for a particular layer. We do not calculate the attention distance for the [CLS] token, as it is a special token

that is used for classification and not for the image itself. We can see that the attention distance is not uniform across the block-depth;

in early layers the attention is spread to cover local and global patches of the image, whereas later layers are cherry picking the most

important tokens to focus on.

where X is the weight matrix of the projection, U represents the left singular vectors, Σ contains the singular

values, and V the right singular vectors. Arranging the weights of the projection matrix X into a matrix, we

can then decompose the weight matrix into three matrices, such that
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= UΣV⊤. (3.7)

In the case of the vision transformer which receives input patches of dimension 16 × 16 × 3 pixels (768 × 1

when flattened), the linear projection layer transforms this into a 384 × 1 vector. This means that the weights

of the linear projection can be written as X ∈ ℝ𝑚×𝑛
with 𝑚 = 768, 𝑛 = 384. The SVD decomposition of the

weight matrix X allows us to look at the singular values Σ, which give us an idea of the importance of each

singular vector in the decomposition. The singular values are sorted in descending order, and the first few

singular values are typically much larger than the rest capturing most of the variation in the data. This, in

combination with the left singular vectors U, allows us to look at the filters that are applied to the image

patches. Each projection is therefore a linear combination according to the weights in X that is applied to

the image patch. This has the added benefit that we can visualize the filters that are applied to the image

patches in image domain, as a single basis vector in U has the dimensionality 768 × 1 and can be reshaped

into the image patch dimensions of 16 × 16 × 3. This gives us insight into what the model has learned and

what it deems to be appropriate basis functions to transform the individual patches into. The corresponding

example of the first 64 filters in U that are applied to the image patches are shown in Fig. 3.26. The filters that

are applied to the image patches capture different aspects of the input image, such as edges, textures, and

colors. This is similar to the first convolutional layer of a CNN, which also captures low-level features in the

input data. But very interestingly, comparing Fig. 3.26 to Fig. 3.10 we can see that the filters in the vision
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Figure 3.26: Linear projection layer of a vision transformer. We visualize the first 64 columns of the U matrix (see Eq. 3.7), which are the

filters that are applied to the image patches. The filters are visualized as 16 × 16 × 3 images, corresponding to the size of the image

patches. Each row of U can be interpreted as the weights of a fully connected layer that is applied to the image patches. The filters

capture different aspects of the input image, such as edges, textures, and colors. To compare the filters to the first convolutional layer of a

CNN, which also captures low-level features in the input data, see Figure 3.10.

transformer are are radial and not oriented in a specific direction. Some more details on the relation between

self-attention and convolutional layers see [129, 130].

Lastly, we will discuss the differences and similarities between fixed and learned positional embeddings

that are added to the input tokens before they are passed through the transformer. We already discussed

before that the positional embeddings are added to the input tokens to allow the transformer to distinguish

between the position of each token in the image, and that the positional embeddings are either fixed or

learned during training. When fixed positional embeddings are used, they are generated using sine and

cosine functions, with each position in the sequence uniquely encoded. The formulation of the positional

encoding in Eq. 3.6, and an interlaced fixed sine and cosine positional embedding P 𝑓 as it is used in a ViT is

shown in Figure 3.27 (a). A learned embedding P𝑙 that used the same ViT is shown in 3.27 (b). It is apparent

that the learned embedding is more sparse and has a more nuanced structure than the fixed embedding. This

becomes even clearer when we compute the pairwise dot product of the individual token positions PP⊤, as

they are shown on the right side of Fig. 3.27. Each row of P
𝑓

P⊤
𝑓

is most similar to itself (prominent diagonal),

and the similarity between neighboring embeddings gradually decreases with distance. In contrast P
𝑙

P⊤
𝑙

shows less regularity; One thing that immediately stands out is that it seems as if the similarity matrix is itself

composed of smaller submatrices. These submatrices are of size 14 × 14 and reflect the number of horizontal

and vertical patches into which the input image gets divided; cf. Fig.3.20. This effectively means that the

sudden increase in similarity every 14 pixels in P
𝑙

P⊤
𝑙

(or after each sub matrix) is in fact a neighboring token

in the input image. To further understand the structure of the similarity matrix we can decompose it into

its eigenvectors in the same fashion as for the linear projection matrix of the kernels (Fig. 3.26, Eq.3.7). The

eigenvectors of the self-similarity of the positional embeddings can then be visualized and are shown both

for the fixed and learned positional embeddings P, see Fig. 3.28. The prominent feature in the learned

positional embedding is that they correlate highly with embeddings that are in the same row or column

as the embedding itself. This is in contrast to the fixed positional embeddings, which show a more regular

pattern of correlation across the embeddings.
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(a) Fixed positional embedding, based on Eq. 3.6.
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(b) Learned Positional Embedding, optimized during training.

Figure 3.27: Left: Positional embedding. Right: Similarity of positional embeddings. The fixed positional embedding (a) is generated

using sine and cosine functions, with each position in the sequence having a unique encoding. The learned positional embedding (b) is a

trainable parameter that is optimized during training, allowing the model to adapt the embeddings to the specific task at hand. The

similarity of the fixed and learned embeddings is visualized using a heatmap, showing the pairwise cosine similarity between the

embeddings. The learned embeddings exhibit a more nuanced and task-specific structure, reflecting the model’s ability to tailor the

embeddings to the data distribution and learning objectives.

Decomposition of PP⊤ for Fixed and Learned Positional Encoding

(a) Fixed Positional Encoding (b) Learned Positional Encoding

Figure 3.28: Decomposition of the Self-similarity matrix PP⊤ for Fixed and Learned Positional Encoding, compare with Fig. 3.27.

We display the first 42 principal components of the positional encoding matrix, scaled by the corresponding singular values. These

components show how the learned positional encoding is mostly senstive to tokens that are located either in the same column or row as

the token itself.
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Extensions to the Vision Transformer

One of the reasons why Transformers spread across many different domains rapidly is the fact that they

are highly modular and function as general purpose units of computation, given that the tokenization of

the input data can be adapted to the specific task. This does not mean, however, that specific adaptation to

individual domains have not occurred and are not necessary. In the domain of image understanding one

of the main issues with the vision transformer is that it does not scale well with the input image size. The

ViT has a fixed patch size of 16 × 16 pixels, which means that the number of tokens in the input sequence

scales quadratically with the image size. This can lead to memory issues when processing high-resolution

images, and can also limit the model’s ability to capture fine-grained details in the input data. To address this

issue, several extensions to the vision transformer have been proposed, which aim to improve the model’s

scalability and performance on high-resolution images.

Low Rank Approximations of Attention One downside of the attention mechanism is that it scales

quadratically in the number of tokens in the input sequence. The Linformer [131], a linear complexity variant

of the transformer model, approximates the self-attention mechanism so that it scales linearly with the

sequence length, rather than quadratically. This is achieved by projecting the sequence dimension of the keys

and values to a lower dimension before computing the attention scores.

The keys and values K,V are projected into a lower dimension 𝑘 (where 𝑘 ≪ 𝑛, 𝑛 being the original sequence

length), using a projection matrix P ∈ ℝ𝑛×𝑘
, resulting in

K = KP, V = VP.

This transformation leads to a significant reduction when computing the self-attention - from O(𝑛2 · 𝑑) to
O(𝑛𝑘). Other ways of dealing with this quadratic complexity are a highly researched topic with the emergence

of Large Language Models (LLMs) such as GPT-3 [132], and the desire to increase the context size that the

model can effectively capture. However many of these methods can be described by some sort of low-rank

approximation of the self-attention matrix, see Fig. 3.29.
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Figure 3.29: Self Attention and a low rank approximation of the projection layers. This low rank approximation decreases the number

of parameters and the computational complexity of the self attention mechanism. It allows for the use of larger models and longer

sequences.

Windowed Attention Another way to reduce the computational complexity of the attention mechanism is

to limit the attention computation to a local neighborhood around the current token. This approach also

happens to solve other issues that the ViT has; The fixed patch size of 16 × 16 pixel patches is constant

throughout the encoder blocks. This also means that the number of tokens that are created per image depend

on the size of the image. While for many image and video summarization tasks (such as classification) the

resolution of 16 × 16 is not a limiting factor, for other tasks such as for example segmentation it definitely

decreases accuracy as every single pixel needs to be classified, and the patch of 16 × 16 might by too coarse.

The Shifted Window Transformer (SWin Transformer) [133] proposes to solve the issues listed above. The

key idea behind the SWin Transformer is to hierarchically process the image and its features across the
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transformer blocks - Fig. 3.30. This allows the model to capture multi-scale information in the input data.

In particular, in early blocks the image is not subdivided into 16 × 16 pixel patches, but rather into 4 × 4

pixel patches. The resulting linear transformations take these patches and limit the attention to a window,

Fig.3.30c, restricting the attention mechanism to a local neighborhood, reducing the computational cost. This

local attention window mechanism is used in transformer architectures that need a way to limit the attention

complexity from O(𝑛2 · 𝑑) as in Vision Transformers to O(𝑛 · 𝑚 · 𝑑), where 𝑛 is the total number of patches, 𝑑

is the dimensionality of the embeddings, and 𝑚 is the number of patches within each window. Since 𝑚 ≪ 𝑛,

this significantly reduces the computational complexity, making it more efficient for larger images or larger

token sequences in general. The way in which the SWin transformer processes the data is reminiscent of the

hierarchical processing in convolutional neural networks as discussed in the previous section.

(a) ViT (b) Swin Transformer (c) Local Attention Window

Figure 3.30: The Swin transformer extracts patches of different spatial resolutions in each encoder block. It allows for scaling the Vision

Transformer architecture for larger input images, as it reduces the computational cost of the attention mechanism, since attention is only

computed in the local neighborhood of each token. The depth of the network is again responsible for increasing the receptive field, as it

is in Convolutional Neural Networks. The hierarchical processing of the image features across the transformer blocks allows the model

to capture multi-scale information in the input data and can be particularly useful if small spatial details are important, such as for

segmentation tasks where individual pixels need to be assigned to a class. Figures taken from [133], Fig. 1 and Fig. 2.

Extensions to Handle Video Data

Video Swin With little modification, it is possible to adapt the originally proposed Swin Transformer to

Video (Video Swin [97]), or any other multi-dimensional data, see Fig. 3.31. The tokenization is done in the

same way as for images, i.e. extracting patches from all images individually, but computing the attention over

a locally increasing spatio-temporal grid. The local window is therefore a small 3D volume, which means

that a certain depth of the network is needed to represent long-range dependencies in the data.

(a) Tokenization (b) 3D-Local Attention Window

Figure 3.31: The SWin architecture can be extended to the spatio-temporal dimension in a quite straightforward manner. Tokens are still

extracted from individual frames, and the attention is computed in a hierarchically increasing spatio-temporal grid. This means, like

in the Swin Transformer, that a certain depth of the network is needed to aggregate the full information of the video into the latent

representation. Figure taken from [97], Fig. 3.

Tokenization and Attention Factorization To extend the vision transformer to video input, there are two

main parts to be considered:

1. The tokenization function that extracts tokens from the video data.

2. The attention computation that can be factorized in different ways.
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...

(a) Spatial Tokenization (b) Spatio-temporal Tokenization (c) Temporal Tokenization

Figure 3.32: Illustration of different tokenization functions for extending the Vision Transformer to video data. (a) Each frame of the

video is treated as an individual image, and tokens are extracted from each frame independently. This method does not capture temporal

dependencies in the tokens themselves, but relies on the attention mechanism between frames to build temporal dependencies. (b) A

sequence of frames are used and stacked to a volume from which tokens of both spatial and temporal extent are extracted. (c) Tokens are

extracted from the whole video volume with a small spatial extent, treating temporal tubes as single tokens. This method captures

temporal dependencies in the tokens themselves, and uses the attention mechanism to build spatial dependencies.
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Figure 3.33: The possible factorization methods when extending the vision transformer into the domain of a Video Vision Transformer.

(a) An extension of the ViT to video can be imagined as first processing the spatial information separately through multiple encoder

blocks and limiting the attention to each spatial block. The temporal information can then be incorporated by dedicated temporal

encoder blocks which perform the self-attention computation on the temporal dimension. (b) An alternative approach is to factorize the

self-attention computation itself. The spatial and temporal information can be processed separately through spatial and temporal encoder

blocks, but at the same network depth, and the self-attention computation can be factorized into spatial and temporal self-attention

blocks. (c) A third approach is to fuse the spatial and temporal information at each layer through fusion blocks. Figure inspired by [29],

Fig. 1.

For images, the choice of the tokenization function is quite straightforward. Non-overlapping patches of

the image are extracted, and the tokens are reshaped into a vector, before being passed through the linear

projection layers that feed into the transformer. The addition of the temporal dimension for video data allows

for more flexibility in the tokenization function, see Fig. 3.32. Each frame of the video can be treated as an

individual image, and the tokens can be extracted from each frame in the same way as for images, Fig. 3.32a.

It is also possible to extract tokens along the temporal dimension, by considering a sequence of frames as a

single token, Fig. 3.32b. Taken to the extreme it is also possible to extract tokens from a video volume with a

small spatial extent such that the temporal tubes are treated as a single token, Fig. 3.32c.

The tokenization is intertwined with the attention computation, as the attention mechanism is applied to the

tokens in the input sequence. However, the attention computation can be factorized in a similar way to the

tokenization function, see Fig. 3.33c Prominent architectures that employ combinations of the aforementioned

tokenization and attention strategies are the Video Vision Transformer (ViVit) [29], the Multiscale Vision

Transformer (MViT) [95], and the TimeSformer [103]. Each of these architecture additionally introduces other

modifications such as attention pooling to improve the performance.

Figure 3.34 shows the difference in the quality of the representation of the feature space of Kinetics-400

videos by including the temporal dimension in the tokenization and attention computation. In particular a

TSNE-clustering [33] into 2 dimensions is performed, and each class is assigned a different color. The features
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Figure 3.34: TSNE clustering of the features of Kinetics400 [106] with different transformer architectures. It shows how the features

are better separated when using spatio-temporal attention. The vanilla ViT16 has a lot of overlap between the classes, whereas the

TimeSformer with spatio-temporal attention has better separation. Figure taken from [103].

of the vanilla ViT architecture show that the classes themselves are not well separated, and that the addition

of spatio-temporal attention (as implemented with the TimeSformer [103] increases class separability.
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3.4 Representation Learning and Training Schemes

Self-Supervised Learning

So far we have mainly discussed modes of learning where the target label is provided to the network, and can

be used to calculate the loss based on the classification error. This type of training that requires the target label

is called Supervised Learning. There are, of course, other modes of learning. We will discuss Self Supervised
Learning. There are two main ways to motivate self-supervised learning. In the context of image and video

understanding, the obvious reason to choose self-supervised learning is that it is often difficult to obtain

labeled data; Large datasets need to be carefully annotated, and this is a time-consuming and expensive

process. However the more interesting reason to choose self-supervised learning even in the presence of

ground truth labels is that it can be used to learn representations of the data that are shown to have better

generalization properties.

Contrastive Learning Contrastive Learning stands out as a pivotal technique, and traces its origins to

Maximum Likelihood Learning [134–136], particularly within the context of image and video analysis

[137–139]. This method leverages unlabeled data by learning to differentiate between similar (positive) and

dissimilar (negative) pairs of data samples, see Fig. 3.35. Essentially, the model is trained to understand

which samples are alike and which are not, without direct reference to explicit labels.

������ 𝑓𝜃 ( )
− 𝑓𝜃

( ) ������→ Small������ 𝑓𝜃 ( )
− 𝑓𝜃

( ) ������→ Large

Anchor
Positive

Negative

Figure 3.35: Example of a contrastive loss function for learning robust image representations. The function 𝑓𝜃 is a neural network that

maps images to a feature space. The loss function measures the similarity between two images. An anchor image is compared to a

positive image and a negative image. The loss function is designed to minimize the distance between the anchor and positive image

while maximizing the distance between the anchor and negative image.

A core component of contrastive learning is the use of a feature space where similar samples cluster together,

while dissimilar ones are pushed apart. This is achieved by optimizing a contrastive loss function, which

minimizes the distance between positive pairs and maximizes it between negative pairs. Such an approach

allows the model to develop a robust understanding of the inherent characteristics of the data. One significant

advantage of contrastive learning is its ability to learn useful representations that can be transferred across

different tasks or domains. These learned representations often exhibit enhanced generalization capabilities.

By focusing on the relationships between data samples, rather than on predefined labels, contrastive learning

can effectively harness the vast amounts of unlabeled data available, circumventing the limitations of labeled

datasets. Thus, it emerges as a powerful tool in machine learning techniques, enabling more efficient and

scalable learning solutions.

The contrastive loss for a pair of samples (𝑥𝑖 , 𝑥 𝑗), where 𝑦𝑖 𝑗 is 1 if the samples are similar (positive pair) and 0

if they are dissimilar (negative pair), can be formulated as:

L(𝑥𝑖 , 𝑥 𝑗) = 𝑦𝑖 𝑗 · d(𝑥𝑖 , 𝑥 𝑗)2 + (1 − 𝑦𝑖 𝑗) ·max

(
0, 𝑚 − d(𝑥𝑖 , 𝑥 𝑗)

)
2

(3.8)

where d(𝑥𝑖 , 𝑥 𝑗) is a distance metric between the features of 𝑥𝑖 and 𝑥 𝑗 , and 𝑚 is a margin that quantifies how

far the dissimilar (negative) pairs should be pushed apart. Usually the positive and anchor samples are

augmented patches of the same image, and the negative samples are patches from different images. The

distance metric can be the Euclidean distance, the cosine similarity, or other similarity measures.
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Figure 3.36: DINO: A self supervised learning method. DINO is a self-distillation process, where the teacher network is updated using

an Exponential Moving Average (EMA) of the student network. The student network is trained to predict the teacher network’s output.

The important aspect is that the teacher network is given more context of the input image, i.e. larger crops of the full image compared to

the student network. This allows the teacher network to have a better understanding of the image and thus provide better supervision

to the student network. However in turn this also means that the student networks learns to predict output classes based on smaller

regions of the image which leads to robust feature representations.

In practical implementations, the contrastive loss is computed over batches of samples rather than pairs. Each

sample in a batch is treated as an anchor, and pairs are formed with every other sample in the batch. This

results in a quadratic increase in the number of comparisons per batch, specifically 𝑁(𝑁 − 1) comparisons

for a batch size of 𝑁 . Efficiency in sampling is crucial because not all pairs contribute equally to learning;

easy negatives (very dissimilar pairs) might not provide useful gradients after early training stages. Hence,

strategies like hard negative mining [140] are employed where more emphasis is placed on negative pairs that

are closer to the anchor in the feature space, as these are more informative and contribute to more effective

training.

DINO Distillation with No Labels (DINO) has been developed as a novel framework that leverages self-

distillation techniques to facilitate representation learning without labeled data. This approach particularly

benefits image and video processing tasks by employing multiple instantiations of the same network, such as

Vision Transformers, to achieve consensus on the representations of augmented versions of the same input

image.

DINO’s methodology is rooted in the principle of knowledge distillation, where a student model is trained

to emulate the output of a teacher model. The difference between the two models is not architectural, but

rather that the teacher model is given a larger input image, whereas the student only receives a crop of that

image. The teacher’s weights are updated as an Exponential Moving Average (EMA) of the student’s weights.

Mathematically, this relationship can be expressed as:

𝜃𝑡 = 𝜏𝜃𝑡 + (1 − 𝜏)𝜃𝑠 , (3.9)

where 𝜃𝑡 and 𝜃𝑠 represent the parameters of the teacher and student models, respectively, and 𝜏 is a decay

coefficient controlling the update rate. For a schematic of the DINO training process refer to Fig. 3.36.

This configuration promotes an internal consistency in the feature space, encouraging the model to focus on

invariant features across different augmentations of the same image.

The distillation process is governed by a cross-entropy loss between the softened outputs of the teacher and

the student, where ‘softened’ refers to the use of a temperature setting in the SoftMax function to produce

smoother probability distributions. This technique enhances the stabilization of the learning process by

providing more informative gradients [141]. This cross-entropy loss can be expressed as:

L= −
∑

𝑝2 log 𝑝1,

where 𝑝1 and 𝑝2 are the SoftMax outputs of the teacher and student models respectively.
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Robust and Transferable Features One of the significant advantages of DINO is its ability to produce

semantically meaningful embeddings where similar instances are closely aligned in the feature space, without

relying on explicit label information. This property enables the learned features to be robust and transferable

across different tasks and domains. By utilizing the inherent variability within unlabeled datasets and

circumventing the need for extensive manual labeling, DINO provides a scalable and efficient solution for

extracting valuable information from large volumes of unlabeled data. For an example of the robustness of

the feature representations learned by DINO versus a supervised training scheme we will compare features

of a Vision Transformer (ViT16) where the only difference is the supervised versus self-supervised training

scheme, see Fig. 3.37.

We extract keys (K) of all tokens in the input image, at various depths in the network. As the (ViT16) uses 11

encoder blocks, we investigate the difference of the representations from the 2
𝑛𝑑

to 11
𝑡ℎ

block. To visualize

the major contributing factors we use PCA on the extracted keys and plot the first three principal components

after each block. The representations learned by DINO are less noisy and semantically meaningful as they

roughly correspond to object parts. This is interesting as the model was trained without any explicit labels,

and the representations are learned by the model itself.

During the clustering we omitted the [CLS] token that is used in the final classification layer of the model.

This token is used to summarize the information of the image and is not used for the clustering. However we

can also visualize the attention of the [CLS] token of the DINO model and compare it to that of a supervised

ViT. We randomly choose 3 attention heads for both the DINO and the supervised model and visualize the

attention of the [CLS] token in the last encoder block for a given image. The results show spurious activation,

which roughly indicates that the representations are very specific, as the network finds some small part in the

input image and attends to that token, whereas more semantically meaningful and interpretable attention

patterns emerge when looking at the attention of the DINO model, see Fig. 3.38.

Notes on Pre-training Pre-training involves training a model on a large, general dataset before fine-tuning

it on a more specific dataset tailored to a particular task. This method leverages the idea that models can

learn useful, transferable features from a comprehensive dataset which can then be applied to enhance

performance on narrower tasks that may have less data available for training. In the context of video action

recognition, this approach is particularly beneficial due to the complex and data-intensive nature of video

processing. Pre-training allows models to learn robust spatial and temporal features that are crucial for

understanding video content, which can significantly reduce overfitting when the model is later fine-tuned

on specific action recognition tasks.

One common technique in video action recognition is the inflation of 2D CNNs into 3D CNNs. This process,

often referred to as network inflation [85], involves adapting architectures originally designed for image

analysis to handle video input. The 2D convolutional filters, which typically operate on image height and

width, are expanded into the temporal dimension. This expansion turns them into 3D filters that can also

process time, allowing the network to learn from the motion information encoded in multiple consecutive

frames. When inflating a 2D model into 3D, the pretrained weights of the 2D model are used as a starting

point. These weights are replicated across the newly added temporal dimension, maintaining the model’s

ability to detect spatial features while beginning to learn temporal features.

Pre-training and sufficient data augmentation have proven to be important factors in enhancing the

performance of models. Experiments in the TimeSformer demonstrate the significance of pre-training on

large-scale datasets like ImageNet, where just Pre-training on ImageNet increases the Top-1 Accuracy on the

Kinetics-400 dataset from 64.8% to 80.5% [103].
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Figure 3.37: We visualized the learned representations of the same vision transformer trained in a supervised manner (top) versus a

self-supervised manner (bottom). We cluster the keys of all patches in a encoder block using PCA and show the first 3 components. The

supervised network shows more spurious activations and also very strong activations in regions that do not directly correspond to

semantically meaningful regions. This is contrasted with the DINO trained ViT that is grouping things semantically in the later layers.

Both networks show a strong bias towards grouping things based on locality in the early layers, which is due to the fixed positional

encoding that is used, cf. Fig.3.22. This also shows that not just the attention maps, but also the learned features themselves can be used

for feature description, especially if the semantics of the features are of interest.
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Input DINO Heads Supervised Heads

Figure 3.38: Visualizing the attention heads from the last layer of the [CLS] token as a query for the different attention heads. We can

see that the learned attention is less spurious, and that the attention heads capture correct semantic meaning and similarity between

semantically similar parts in the input image. Figure adapted from [142], Appendix A, Fig. 10.
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"Is Appearance Free Action Recognition Possible?"

in ECCV 2022.

Intuition might suggest that motion and dynamic information are key to video-based action recognition. In

contrast, there is evidence that state-of-the-art deep-learning video understanding architectures are biased

toward static information available in single frames. Presently, a methodology and corresponding dataset to

isolate the effects of dynamic information in video are missing. Their absence makes it difficult to understand

how well contemporary architectures capitalize on dynamic vs. static information. We respond with a novel

Appearance Free Dataset (AFD) for action recognition. AFD is devoid of static information relevant to action

recognition in a single frame. Modeling of the dynamics is necessary for solving the task, as the action is only

apparent through consideration of the temporal dimension. We evaluated 11 contemporary action recognition

architectures on AFD as well as its related RGB video. Our results show a notable decrease in performance

for all architectures on AFD compared to RGB. We also conducted a complimentary study with humans

that shows their recognition accuracy on AFD and RGB is very similar and much better than the evaluated

architectures on AFD. Our results motivate a novel architecture that revives explicit recovery of optical flow,

within a contemporary design for best performance on AFD and RGB.

Keywords: Action Recognition, Static and Dynamic Video Representation, Human Motion Perception

https://f-ilic.github.io/AppearanceFreeActionRecognition

https://f-ilic.github.io/AppearanceFreeActionRecognition


84 4 The Importance of Motion for Action Recognition

Figure 4.1: Appearance Free Dataset (AFD) for Action Recognition. Within each set of three images we show: a single RGB frame (left);

corresponding optical flow in Middlebury colour coding [61] (middle); corresponding appearance free frame (right). When viewed as

video the AFD reveals the motion in the original video even as any single frame provides no relevant discriminative information.

4.1 Introduction

Motivation

Action recognition from video has been subject of significant effort in developing and improving both

algorithms and datasets [79, 143]. This interplay between algorithm and dataset advances has led to

paradigm shifts in both. Algorithms have evolved from primarily hand-crafted mathematically, physically,

and heuristically driven approaches to methods based on deep-learning architectures. Datasets have evolved

from relatively small, carefully selected videos to massive, web-crawled collections. As a result, current

state-of-the-art algorithms for action recognition achieve impressive levels of performance on challenging

datasets. In contrast, the internal representations learned by the architectures remain under explored [144].

This lack of understanding is unsatisfying both scientifically as well as pragmatically. From a scientific

perspective, such detailed analysis is integral to understanding how a system operates and can guide further

improvements. From a pragmatic perspective, multiple jurisdictions are beginning to require explainability

as a precondition for deployment of artificial intelligence technologies [145, 146]; technologies lacking such

documentation may not see real-world application.

Some evidence suggests that contemporary deep-learning architectures for video understanding can perform

well on the task of action recognition with little to no regard for the actual actors [147–149]. These studies

suggest that static visual information available in a single frame (e.g. colour, spatial texture, contours,

shape) drives performance, rather than dynamic information (e.g., motion, temporal texture). While some

methodologies have been aimed at understanding the representations learned by these architectures [115, 150,

151], none provide an approach to completely disentangle static vs. dynamic information. In response, we have

developed an Appearance Free Dataset (AFD) for evaluating action recognition architectures when presented

with purely dynamic information; see Fig. 4.1. AFD has been rendered by animating spatial noise, historically

known as Random Dot Cinematographs RDCs [152], using image motion extracted from the UCF101 dataset

[107] by a state-of-the-art optical flow estimator [69]. The resulting videos show no pattern relevant to action

recognition in any single frame; however, when viewed as video reveal the underlying motion. We have

produced AFD for the entire UCF101 dataset, evaluated a representative sample of contemporary action

recognition architectures and used our results to drive development of a novel architecture that enhances

performance when confronted with purely dynamic information, as present in AFD.

The ability of action recognition (and other) video architectures to work in absence of static appearance

information is not only an academic exercise. Real-world deployment scenarios may require it, such as in the

presence of camouflage. Two examples: Video surveillance for security should be able to cope with nefarious

actors who artificially camouflage their activities; video-based wildlife monitoring must be robust to the

natural camouflage that many animals possess to hide their presence.

Related work

Datasets A wide variety of datasets for development and evaluation of automated approaches of video

understanding are available [153]. For action recognition, in particular, there is a large body ranging from
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a few dozen classes [100, 107, 108, 115] to massively crawled datasets with classes in the hundreds [85, 100,

113, 114]. Some work has specifically focused on curating videos where temporal modeling is particularly

important for action recognition [113, 115, 154, 155]; however, they still contain strong cues from single frame

static appearance (e.g. colour, shape, texture). Overall, no action recognition dataset completely disentangles

single frame static information from multiframe dynamic information.

Camouflaged actors would provide a way to evaluate recognition systems based primarily on dynamic

information. While there are camouflage video understanding dataset available, they are of animals in the

wild as selected for object segmentation (e.g. [156, 157]). In contrast, it is unlikely that a non-trivial number

of real-world videos of camouflaged actors can be found. In response, our Appearance Free Dataset (AFD)

provides synthetic camouflaged action recognition videos as coherently moving patterns of spatial noise,

historically known as Random Dot Cinematograms (RDCs) [152]. These patterns are defined via animation of

an initial random spatial pattern, where the pixelwise intensity values of the pattern are randomly selected.

By design, they reveal no information relevant to the motion in any single frame; however, when viewed as

video the motion is apparent; examples are shown in the right columns of Fig. 4.1. Such videos have a long

history in the study of motion processing in both biological [158, 159] and machine [160, 161] vision systems.

Interestingly, humans can understand complex human body motion solely from sparse dots marking certain

body points, even while merely a random dot pattern is perceived in any single frame [162].

Synthetic video, both striving for photorealism [62, 67, 163–165] and more abstracted [105, 166], is a common

tool in contemporary computer vision research that allows for careful control of variables of interest. Our

effort adds to this body with its unique contribution of a synthetic camouflage action recognition dataset for

probing a system’s ability to recognize actions purely based on dynamic information. Notably, while our

texture patterns are synthetic, they are animated by the motion of real-world actions [107].

Models and action recognition architectures A wide range of action recognition architectures have

been developed [153]. Most contemporary architectures can be categorized as single stream 3D (𝑥, 𝑦, 𝑡)
convolutional, two-stream and attention based methods. Single stream approaches are motivated by the

great success of 2D convolutional architectures on single image tasks [5, 6, 167, 168]. In essence, the 3D

architectures extend the same style of processing by adding temporal support to their operations [28, 81,

85, 88, 169]. Two-stream architectures have roots in biological vision systems [170, 171]. The idea of having

separate pathways for static video content and dynamic information has been variously adopted. A key

distinction in these designs is whether the pathway for dynamic information explicitly relies on optical

flow estimation [26, 172] or internally computed features that are thought to emulate flow like properties

[27]. Attention-based approaches rely on various forms of non-local spatiotemporal data association as

manifested in transformer architectures [87, 95]. For evaluation of architectures on the new AFD, we select a

representative sampling from each of these categories.

Interpretability Various efforts have addressed the representational abilities of video understanding

architectures ranging from dynamic texture recognition [173], future frame selection [174] and comparing

3D convolutional vs. LSTM architectures [175]. Other work centering on action recognition focused on

visualization of learned filters in convolutional architectures [150, 151], or trying to remove scene biases

for action recognition [115]. Evidence also suggests that optical flow is useful exactly because it contains

invariances related to single frame appearance information [176]. More closely related to our study is work

that categorized various action classes as especially dependent on temporal information; however, single

frame static information still remains [155]. Somewhat similarly, an approach tried to tease apart the bias of

various architectures and datasets towards static vs. dynamic information by manipulating videos through

stylization; however, single frame static information remained a confounding factor [177]. While insights

have been gained, no previous research has been able to completely disentangle the ability of these models to

capitalize on single frame static information vs. dynamic information present across multiple frames. We

concentrate on the ability of these systems to capture dynamic information, with an emphasis on action

recognition.
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Contributions

In light of previous work, we make the following three major contributions.

1. We introduce the Appearance Free Dataset (AFD) for video-based action recognition. AFD is a synthetic

derivative of UCF101 [107] having no static appearance cues, however, revealing real-world motion as

video.

2. We evaluate 11 contemporary architectures for action recognition on AFD; i.e. dynamic information alone.

We conduct a psychophysical study with humans on AFD, and show significanly better performance

of humans than networks. These results question the ability of the tested networks to use dynamic

information effectively.

3. We provide a novel improved action recognition architecture with enhanced performance on AFD,

while maintaining performance on standard input.

We make AFD, associated code and our novel architecture publicly available.

4.2 Appearance free dataset

Our proposed appearance free dataset, AFD101, is built from the original UCF101 [107] by employing a

state-of-the-art optical flow estimator [69] to generate the corresponding framewise flow that is used to

animate spatial noise patterns. The resulting AFD101, consisting of 13,320 videos, depicts realistic motion even

while any individual frame is devoid of static appearance information that is relevant for action recognition.

Figure 4.1 and the project webpage provide illustrative examples. We use UCF101 from many possible choices

[153] as the basis for AFD because it was widely used in action recognition evaluation and is large enough to

support training, yet small enough to facilitate numerous experiments.

Dataset generation

Generation of AFD from RGB video follows three key steps; see Fig. 4.2.

1. Initialization: Generate a single frame of noise, with same spatial dimensions as the frames in the input

video. The pixel values are sampled uniformly i.i.d. as three-channel RGB values. Let this frame be

denoted as 𝑅0.

2. Flow calculation: Generate interframe optical flow for each temporally adjacent pair of input RGB

frames, 𝐼𝑡−1 , 𝐼𝑡 , 𝑡 ∈ [1, 𝑇], yielding the flow 𝐹𝑡−1,𝑡 , with 𝑇 being the number of frames in the input video.

We use RAFT [69], for the extraction of optical flow.

3. Warping: We warp the initial noise frame 𝑅0 using 𝐹𝑡−1,𝑡 , 𝑡 ∈ [1, 𝑇], to generate the next noise frame,

𝑅𝑡 . The output frames, 𝑅𝑡 , are an appearance free version of the input RGB video, where at each frame

all that is seen is i.i.d. noise, but whose interframe motion corresponds to that of the original video; this

output video has the same spatial and temporal dimension as the input video.

Figure 4.2: Appearance free videos are created by 1) initializing noise R0, 2) calculating optical flow between input frame pairs, and 3)

using the optical flow to warp R0. Steps 2 and 3 are repeated for each frame-pair in the input video.
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Figure 4.3: ResNet50 Top-1 Accuracy on single frame UCF101 by Action Groups.

Implementation details

The details of our proposed methodology are particularly important, as all static discriminatory single frame

information must be removed; to this end nearest neighbor interpolation during warping is performed. For

each warp, newly occluded pixels are overwritten by the new value moved to that location; de-occluded

pixels are filled with 𝑅0 values to ensure that the spatial extent of the noise is constant. Along the border

where the warping leads to undefined values (e.g. pixel at that location moves elsewhere and no new value is

warped into that location) are treated as de-occlusions as well. In preliminary experiments, we found that

other choices of implementation, e.g. bilinear interpolation as opposed to nearest neighbor interpolation, or

always estimating flow with respect to 𝐼0 always yielded inferior results and unwanted artifacts. In the worst

cases these artifacts led to revealing motion boundaries of actors in single frames.

Appearance in optical flow

The concept of appearance consists of multiple intertwined qualities, including texture, contour and shape.

While optical flow is indeed free of texture it is not free of contour and shape induced by motion of the camera

or the actor itself; this fact can be observed qualitatively in Fig. 4.1: The flow visualizations alone reveal violin

playing and knitting. We quantify this observation as follows. We train a strong single frame recognition

architecture, ResNet50 [168], on single frames from three datasets: UCF101 (the original), UCF101Flow,

comprised of optical flow frames generated from UCF101 by RAFT [69], and AFD101. Top-1 recognition

results for UCF101, UCF101Flow and AFD101 are 65.6%, 29.4% and 1.1%, respectively. These results show that

only AFD101 contains no discriminatory information in a single frame, as only 1.1% top-1 accuracy is in line

with random guessing.

A dataset subset for exploration

To evaluate the performance of state-of-the-art architectures in the context of human performance, a reduced

subset of the classes in UCF101 is needed, simply because it is not feasible to conduct an experiment with

humans with the original 101 categories. We chose to have five classes as it is possible for humans to hold five

action classes in working memory for a prolonged duration [178]. In the following, we refer to the reduced

size version of AFD101 as AFD5 and the corresponding reduction of UCF101, i.e. the RGB video, as UCF5.

A defining property of the subset is that it discourages recognition from static information in single frames

even within the original RGB input. To this end we train a ResNet50 [168], used by many state-of-the-art

architectures as inspiration for their backbone [153], on the entire UCF101 dataset in a single frame classification

manner, i.e., we randomly sample a frame from UCF101. By design, this procedure isolates the ability of any

given class to support recognition on the basis of a single frame. UCF101 is subdivided into five action groups

[107]: Human Object Interaction, BodyMotion, PlayingInstruments, Sports and Human Human Interaction; Fig. 4.3

has single frame recognition accuracy by group.

Our selection criterion is to choose videos with similar appearance; therefore, we select a subset of actions

within a group. To select the action group we consider the following points. The Body Motion group is

particularly attractive because it is the only category that has five or more classes with below 25% single frame
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Figure 4.4: Singleframe ResNet50: After finetuning on the BodyMotion action group of UCF101, we a) inspect the resulting confusion

matrix b) reorder it by its diagonal weight so that classes that are often confused among each other get grouped together, and c) select

the most prominent subgroup.

recognition accuracy. The Human Object Interaction group is the next closest in terms of having several (albeit

fewer that five) categories with such low single frame accuracy. However, its classes tend to be distinguished

by featuring a prominent object and we do not want to promote categorization based on single frame object

recognition. The PlayingInstruments group also features prominent objects and likewise is a poor choice. The

remaining groups (Sports and Human Human Interaction) have generally higher single frame recognition

accuracies; so, also are excluded. These considerations lead us to Body Motion as the group of interest for

present concerns.

With the selection of Body Motion, we finetune the previously trained ResNet on that particular group. Given

that finetuning, we perform confusion matrix reordering [179] and select the five classes that are most

confused among each other in the group. More precisely we find the permutation matrix that has the highest

interclass entropy, excluding classes with less than 50% accuracy; see Fig 4.4. This results in the choice of the

following five classes for AFD5: Swing, Lunges, PushUps, PullUps, JumpingJack. AFD5 consists in total of 583

videos with approximately 116 videos per class.

4.3 Psychophysical study: Human performance

To set a baseline for Appearance Free Data we perform a psychophysical study. The ability of humans to

recognize actions from dynamic information alone, i.e. without any single frame static information, has been

documented previously [162, 180, 181]. These studies are conducted with sparse dots, typically at major body

joints, on otherwise blank displays. Our study appears to be unique in its use of dense noise patterns i.e. dense

random dots.

Experiment design

A session in the experiment consisted of the following seven phases. (i) The participant is presented with

a brief slide show explaining the task. The participant is told that they will see a series of videos as well

as a menu on the same display from which to indicate their perception of a human action that is depicted.

(ii) Training is provided on UCF5, i.e., RGB video. During this phase, four training videos from each class,

totaling 20 videos, are presented with correct responses indicated in the menu. The videos are shown in

randomized order. (iii) Testing is performed on 90 UCF5 test videos. Each video repeats until the participant

makes their selection on the menu. (iv) A rest period of five minutes is provided. (v) Training is provided

on AFD5, i.e. appearance free video. During this phase, four training videos from each class are presented

with correct responses indicated in the menu. The videos also are shown in randomized order. (vi) Testing is

performed on 90 AFD5 test videos. Each video repeats until the participant makes their selection on the menu.

(vii) Participants are given a questionnaire to complete, with questions including visual impairments (all had

normal or corrected vision), familiarity with computer vision, action recognition, as well as their impression
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Figure 4.5: Results of psychopysical study. Top row: Performance on standard RGB video, UCF5. Bottom row: Performance on appearance

free data, AFD5. Additional results, including a breakdown per participant are presented in the Appendix.

of task difficulty. During both test phases, action category choices and response times were recorded. Ten

human participants were recruited as volunteers to participate in the experiment. All experiments were

conducted in the same environment, i.e. computer/display, lighting and seating distance from the display

(0.5 meters). Participants were allowed to view freely from their seat and take as much time in making their

responses as they like. All participants completed their session within approximately 30 minutes, including

the questionnaire. Participants were informed and consented to the data gathered in written and signed

manner, and were provided with sweets and thanks at task completion. The sample size of ten participants is

in our view sufficient to show that various people with different backgrounds are able to solve AFD data

without much trouble and to establish a baseline for comparison to action recognition architectures.

Human results

Results of the psychophysical study are shown in Fig. 4.5. On average, our participants perform with an

accuracy of 89.8% on AFD5 and 98.9% on UCF5. Participants report that mistakes on UCF5, the RGB videos,

resulted from accidental clicks when making selections. Our analysis of AFD5 samples that were most

frequently misclassified by the participants reveals that those videos typically have sudden and high speed

camera movement, e.g. as induced by quick panning and zooming, which in turn creates very large optical

flow displacement. The plots of response time show that participants take longer to make their choice on

AFD5, with the exception of JumpingJack which remains largely unaffected. The extended time taken for

AFD5 suggests that appearance free recognition requires more effort and repeated playback of the video is

necessary, even though ultimate performance is high.

Overall, the psychophysical results document the strong ability of humans to recognize actions on the basis

of AFD, as well as standard RGB videos.
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4.4 Computational study: Model performance

We evaluate 11 state-of-the-art action recognition architectures on UCF101 and our new AFD101. We select

representative examples from the currently most widely used categories of action recognition architectures,

cf. Sec. 4.1: single stream 3D convolutional [28, 85, 88], two-stream convolutional [26, 27] and attention-based

[87, 95]. We also evaluate on a standard 2D convolutional architecture (ResNet50 [168]) to verify that our

AFD does not support classification based on single frame static information. Notably, our results from the

psychophysical study allow us to compare the performance of the network architectures to that of humans

on both UCF5 and AFD5.

Training procedure

To guarantee a fair comparison all reported results are obtained by training and testing with our procedure,

described below. Furthermore, since we want to investigate architectural benefits on Appearance Free Data,

all results (except for one architecture, see below) are obtained without pretraining - concurrently often done

on Kinetics400 [85] - as there is no AFD for Kinetics. Our goal is not to show how to archieve best performance

on UCF101; it is to show the difference in performance of each network when presented with only dynamic

information. We also ran preliminary experiments with pretraining on Kinetics and finetuning on AFD, but

saw no significant improvement during AFD testing compared to no pretraining. Nevertheless, since all

the evaluated architectures, save one, employ a ResNet-like backbone we use ImageNet pretrained versions

of those to initialize our training. The exception is MViT, which needed to be initialized with Kintecs400

weights, as its performance was not increasing from baseline with the aforementioned scheme. However the

Kinetics weights were only used as an intializer and we allowed for retraining of the entire backbone to make

the results comparing UCF and AFD as comparable as possible. We acknowledge that our training strategy

does not allow for the architectures to show state-of-the-art performance on RGB input in our experiments;

however, our approach is necessary to allow for fair comparison of performance on RGB vs. AFD and measure

the respective performance between the modalities.

Training details

We train with Adam [47] using an early stopping scheme, and a base learning rate of 3𝑒−4
. The batch size is

chosen as large as possible on two GPUs with 24GB memory each. Data augmentation, a staple of modern

deep learning, is kept the same for all evaluated models and datasets; uniform temporal sampling with

jitter, random start frame selection, and contrast, hue, and brightness jitter are applied. Random horizontal

flipping of entire videos is used, as actions in UCF101 do not depend on handedness. A quite aggressive

data augmentation scheme that changes over the course of every 20 epochs to a less aggressive one, and

capping at 80 epochs is used. We find that this aggressive data augmentation technique is needed to achieve

reasonable results when no pretraining is used. Spatial center crops of 224×224 are used as the final input to

all networks with the exception of X3D XS and S, which use a spatial resolution of 160×160. The reported

results are the averages of the three standard splits used on UCF101, now applied to both the original RGB as

well as AFD. The results on UCF5 and AFD5 were obtained by finetuning the networks previously trained on

their 101 class counterparts and using the same splits.

Model results

Table 4.1 shows top-1 accuracy results for all evaluated architectures on UCF101, AFD101, UCF5 and AFD5.

Note that the results for the single frame ResNet on UCF101 essentially are the same as those shown in Fig. 4.3.

The results in Table 4.1 also validate our claim of having removed all static, single frame information relevant

to recognition, as the performance is equal to random choice.



4.4 Computational study: Model performance 91

For most of the action recognition architectures, it is seen that obtaining ≈ 70-80% top-1 accuracy is possible.

This fact makes the sizable drop of performance on AFD data, the Δ columns in Table 4.1, especially striking.

The average performance drops by approximately 30% almost evenly across all architectures - with two

notable exceptions: The Fast stream of SlowFast and I3D OF a common I3D architecture with an optical flow

estimator before the network input. These two architectures are noteworthy because their ability to maintain

performance across regular and appearance free video apparently stems from their design to prioritize

temporal information over spatial; although, this focus on temporal information leads them to be less

competitive on the standard RGB input in comparison to the other evaluated architectures. The comparison to

human performance shows X3D variations to be the best architectures, competitive with human performance

on UCF5; however, the best architectures on AFD5 (X3D M and SlowFast) are considerably below human top-1

accuracy (18% below). These results show that there is room for improvement by enhancing the ability of

current architectures to exploit dynamic information for action recognition. It also suggests that optical flow

is not what is learned by these networks, when no explicit representation of flow is enforced. Importantly,

TwoStream [26] and I3D [85] OF were evaluated with RAFT optical to allow for a fair comparison with

each other and with our new algorithm, introduced in the next section. The summary plots below Table 4.1

show learnable architecture parameter counts and ordering by AFD accuracy. These plots further emphasize

the fact that explicit representation of dynamic information (e.g. as in I3D OF and to some extent Fast)

is best at closing the gap between performance on RGB and AFD. X3D M is among the top performing

architectures on RGB; further, among those top RGB performers, it shows the smallest Δ. Also, it is has a

relatively small number of learnable parameters, with only Fast notably smaller. These observations motivate

the novel architecture that we present in the next section. It improves performance on AFD, while also slightly

improving performance on RGB. This architecture is given as E2S-X3D in Table 4.1. Moreover, it performs on

par with humans on UCF5 and AFD5.
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Table 4.1: Top-1 accuracy for the evaluated action recognition architectures. The second column indicates the number of frames and the

temporal sampling rate, 𝑓 × 𝑟, of each network. For two-stream approaches the notation

(
Appearance

Motion

) ( 𝑓×𝑟
𝑓×𝑟

)
is used. A drop in performance

across all networks on AFD data is observed. Plots below the table show parameter counts as well as summarize the accuracy findings,

sorted by AFD performance. Absolute performance on UCF is of secondary importance; it merely gives a point of comparison with

respect to AFD. The Δ columns shows the difference between UCF and AFD performance, which highlights the relative dynamic
recognition capability of architectures.

𝑓 × 𝑟 UCF101 AFD101 Δ UCF5 AFD5 Δ

Single Image Input
ResNet50 [168] 1 × 1 65.6 1.1 64.5 74.2 20.1 54.1

Video Input
I3D [85] 8 × 8 67.8 43.3 24.5 95.6 55.1 40.5

TwoStream [26]

(
1×1

10×1

)
76.1 29.3 46.8 78.1 62.3 15.8

C2D [87] 8 × 8 77.4 42.6 34.8 84.5 69.0 15.5

R2+1D [88] 16 × 4 68.2 28.9 39.3 80.6 67.9 12.7

Slow [27] 8 × 8 73.3 37.6 35.7 89.9 40.6 49.3

Fast [27] 32 × 2 50.5 45.9 4.6 71.4 65.7 5.7

SlowFast [27]

(
Slow

Fast

) (
8×8

32×2

)
82.9 55.4 27.5 91.0 70.2 20.8

I3D [85] OF 8 × 8 54.5 44.4 10.1 74.4 59.7 14.7

X3D XS [28] 4 × 12 79.8 43.2 36.6 95.2 57.0 38.2

X3D S [28] 13 × 6 80.8 56.9 23.9 97.3 69.8 27.5

X3D M [28] 16 × 5 81.5 58.2 23.3 98.8 71.5 27.3

MViT [95] 16 × 4 82.9 39.8 43.1 95.1 22.2 72.9

E2S-X3D Ours
(
M

S

) (
16×5

13×6

)
85.7 73.9 11.8 99.4 90.8 8.6

Human Average — — — 98.9 89.8 9.1
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4.5 Two-stream strikes back

The results of our evaluation of architectures in Sec. 4.4 show the importance of explicit representation of

dynamic information for strong performance on AFD. This result motivates us to revive the two-stream

appearance plus optical flow design [26]. While state of the art when introduced, compared to more recent

action recognition architectures, e.g. those evaluated in Sec. 4.4, it is no longer competitive [143]; so, we

incorporate two-streams into the top performing architecture on RGB input with the smallest drop on AFD,

i.e. X3D.

Design of a novel network architecture

The design of our novel architecture, ES2-X3D, is shown in Fig. 4.6. Initially, optical flow fields and RGB

images are processed in separate 3D convolutional streams. Both streams are versions of the X3D architecture

[28], where we use the S variant for optical flow and the M variant for RGB. These two architectures differ in

their spatiotemporal resolution of the input and as a consequence the activation maps. X3D M uses larger

spatial and temporal extents, whereas S has smaller spatial and temporal supports. Since the input flow field

already represents the dynamic information with detail, the additional spatiotemporal extent is not needed;

in contrast, the RGB stream without the optical flow benefits from larger spatial and temporal support, see

Fig. 4.6 (bottom). We validate these choices below via ablation. The dimensionality of the layers is shown

in Fig. 4.6. Following the separate parallel processing, late fusion is performed. We fuse the outputs via
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Model input conv1 res2 res3 res4 res5 conv5

M 16 × 224 × 224 16 × 112 × 112 16 × 56 × 56 16 × 28 × 28 16 × 14 × 14 16 × 7 × 7 16 × 7 × 7

S 13 × 160 × 160 13 × 80 × 80 13 × 40 × 40 13 × 20 × 20 13 × 10 × 10 13 × 5 × 5 13 × 5 × 5

Figure 4.6: Our novel ES2-X3D operates with two parallel streams for processing of RGB (top stream) and optical flow (bottom stream).

Late fusion via concatenation is followed by a fully connected and Softmax layer. The table shows the output sizes of each employed

X3D architecture in the format T×H×W.

Table 4.2: Performance of X3D architecture configurations, XS, S and M for UCF5 and AFD5. Ablation is performed for both optical flow

and RGB inputs.

UCF5
Input

Architecture

(
RGB

-

) (
-

RAFT

) (
RGB

RAFT

)
XS 4 × 12 95.2 82.1 —

S 13 × 6 97.3 89.5 —

M 16 × 5 98.8 86.8 —(
M

S

) (
16×5

13×6

)
— — 99.4

AFD5
Input

Architecture

(
RGB

-

) (
-

RAFT

) (
RGB

RAFT

)
XS 4 × 12 57.0 77.3 —

S 13 × 6 69.8 80.3 —

M 16 × 5 71.5 78.9 —(
M

S

) (
16×5

13×6

)
— — 90.8

simple concatenation of the outputs of the two streams. While more sophisticated fusion schemes might be

considered, e.g. [172], we leave that for future work. Finally, a fully connected layer followed by a Softmax

layer yields the classification output, which is used with a cross-entropy loss to train the network. For optical

flow input, we use a state-of-the-art optical flow estimator, RAFT [69] pretrained on Sintel [62]. We do not

further train the flow extractor and only use it in its inference mode. To capture fine grained motion and to

adjust for the different spatial resolution RAFT was trained with, we add an up-sampling layer to the RGB

images prior to RAFT. Data augmentation, as described in Sec. 4.4, is only used in the appearance stream, as

indicated in Fig. 4.6. The training, validation and testing of the network follows the same procedure as the

other networks; described in Sec. 4.4.

Empirical evaluation

E2S-X3D outperforms all competing architectures on AFD101, with the closest competitor (singlestream X3D)

trailing by 15.7%; see Table 4.1. It also improves performance on UCF101, albeit slightly; 2.8% points gained on

MViT (MViT has around 6×more parameters). To rule out an ensembling effect, we compared our network

in its default configuration (RGB in one stream, optical flow in the other) with an alternative where it inputs

RGB to both streams. We find a performance drop of 10.6% on UCF101 and 30.7% on AFD101, validating

our hypothesis that explicit optical flow is crucial. Moreover, it is on par with human performance on both

AFD5 and UCF5. These results document the advantage of explicit modeling of motion for action recognition.

Table 4.2 shows results of ablations across various X3D configurations for both AFD5 and UCF5. It shows

that for both input modalities, best performance is achieved when the S configuration is used for optical flow

and the M configuration for the RGB stream. This set of experiments empirically validates our final ES2-X3D

design.
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4.6 Conclusions

We introduce an extension to a widely used action recognition dataset that disentangles static and dynamic

video components. In particular, no single frame contains any static discriminatory information in our

apperance free dataset (AFD); the action is only encoded in the temporal dimension. We show, by means of a

psychophysical study with humans, that solving AFD is possible with a high degree of certainty (∼ 90% Top1

Accuracy). This result is especially interesting as 11 current state-of-the-art action recognition architectures

show much weaker performance as well as a steep drop in performance when comparing standard RGB to

AFD input. These results lend to the interpretability of the evaluated architectures, by documenting their

ability to exploit dynamic information. In particular, this shows that optical flow, or a similarly descriptive

representation, is not an emergent property of any of the tested network architectures.

We propose a novel architecture incorporating the explicit computation of optical flow and use insights from

recent action recognition research. This explict form of modeling dynamics allows our approach to outperform

all competing methods, and compete with human level performance. Given the strong performance of our

architecture in our evaluation, future work could consider training and investigation of performance on larger

datasets [85, 113] as well as application to other tasks where non-synthetic data is available and dynamic

information plays a crucial role, e.g. camouflaged animal detection [156]. Alternative fusion strategies are

also a potential for improvement of our present architecture.
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Appeared as
"Selective, Interpretable and Motion Consistent

Privacy Attribute Obfuscation for Action Recognition"
in CVPR 2024.

Concerns for the privacy of individuals captured in public imagery have led to privacy-preserving action

recognition. Existing approaches often suffer from issues arising through obfuscation being applied globally

and a lack of interpretability. Global obfuscation hides privacy sensitive regions, but also contextual regions

important for action recognition. Lack of interpretability erodes trust in these new technologies. We highlight

the limitations of current paradigms and propose a solution: Human selected privacy templates that yield

interpretability by design, an obfuscation scheme that selectively hides attributes and also induces temporal
consistency, which is important in action recognition. Our approach is architecture agnostic and directly

modifies input imagery, while existing approaches generally require architecture training. Our approach offers

more flexibility, as no training is required, and outperforms alternatives on three widely used datasets.

Keywords: Action Recognition, Static and Dynamic Video Representation, Human Motion Perception

https://f-ilic.github.io/SelectivePrivacyPreservation

https://f-ilic.github.io/SelectivePrivacyPreservation
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Figure 5.1: Our goal is to hide privacy attributes without action recognition performance dropping. Left: Arbitrary images can be used

to specify an interpretable template library defined by privacy attributes. Middle: A salience map is generated from privacy templates;

example illustrates use of templates for personal identification. Right: The source video is masked with noise as guided by salience and

animated by source video optical flow. Salience makes masking selective to private regions, while preserving scene context; optical flow

preserves motion – both of which are critical for action recognition. The obfuscated video can be input directly to arbitrary privacy and

action recognition systems without retraining. Zoomed circles highlight details only for illustration.

5.1 Introduction

Advances in state-of-the-art computer vision and machine learning enable deployment of such systems

in the public sphere. Accompanying these initiatives, concerns arise for the privacy of individuals that

are captured in acquired imagery [182–185]. In particular, considerations arise regarding attributes that

individuals want to keep confidential, yet that are revealed through visual information, even though they

are not critical for the functioning of the deployed system, e.g. identity, age, gender and race. Video-based

action recognition is an area of consideration as it has potential for widespread applications in surveillance

and monitoring. These concerns have sparked interest in privacy preserving action recognition [186–189].

These approaches process input imagery to obscure privacy attributes while maintaining action recognition

performance. Contemporary approaches typically apply their obfuscation across entire input video frames

and improvements have been made within this paradigm. Notably, however, there are downsides to this

paradigm, as follows.

Collateral damage. Global masking strategies indiscriminately obscure the entire image, impacting regions

within the scene that may exhibit high correlations with actions, albeit lack relevance to privacy. For example,

it is known that masking objects and scene context can impair action recognition performance [190], yet

these are lost in global masking. Furthermore, global masking strategies do not allow for selective attribute

obfuscation and generally hide all attributes at once, even when not all are of concern.

Loss of dynamic information. The large change in input modalities from global masking necessitates the

retraining of the action recognition module or the design of custom modules (adversarial training), which

adds to the challenge of practical deployment. Indeed, even if applied more locally, the obfuscation can

compromise the motion of the actors, which also can be important in action recognition [26].

Lack of interpretability. Finally, given that state-of-the-art approaches are end-to-end trained with limited

concern for interpretability, the exact nature of what is being masked and how it is achieved can remain unclear.

Lack of interpretability is an important concern in privacy preservation, because its lack can compromise

user trust [191, 192].
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Contributions

We present an approach to privacy preserving action recognition that responds directly to current limitations

in four ways, as illustrated in Fig. 5.1. (i) The approach is based on local detection and selective obfuscation

of privacy sensitive regions. This selectivity maintains global context information that is crucial to action

recognition, yet unimportant for privacy. (ii) The local processing avoids large modality shifts in the imagery

and is independent of the action recognition module itself; therefore, it does not require algorithm retraining,

which is sometimes infeasible. (iii) The masking preserves interframe motion; so, that information is available

for action recognition. (iv) The privacy sensitive masking is interpretable by design, and allows inspection

through the explicitly generated saliency maps.

5.2 Related work

Privacy in machine learning. The need to protect privacy has garnered increased attention in the vision

research community. Current models commonly consume large amounts of web data to learn generalizable

representations [8, 193, 194], which inevitably invade personal information, such as identity and location.

Moreover, in model deployment it also may be desirable to preserve privacy information. The concern for

privacy is not limited to vision research, but extends across artificial intelligence, including natural language

processing [195] and more general machine learning [196]. As these technologies find their way into broader

society, privacy concerns must be considered.

Privacy preserving action recognition. We focus on video-based action recognition. Recent developments

in this area have yielded systems capable of strong performance on challenging datasets; for review see,

e.g. [197]. Similarly, applications, including those in privacy-sensitive scenarios (e.g. surveillance [198] and

monitoring [199]), are being developed. To provide useful spatiotemporal signals for action recognition, video

clips are mostly collected to capture actors with a great level of clarity throughout the actions, thus increasing

the chance of privacy leakage. Moreover, such datasets are expanding rapidly, e.g. [106, 109].

In response to these concerns, research on recognizing actions while preserving private information has

emerged in recent years. Early work concentrated on devising models that can work on low-resolution

videos [200–202]; these methods often operate at the cost of sacrificing action recognition performance. Other

work along these lines developed face-anonymization techniques to prevent models from yielding high

accuracy on face recognition [203, 204]. Still, those approaches cannot easily extend to other attributes and

are correspondingly limited. More recent work has focused on implicitly learning transformation functions

to anonymize videos in a data-driven fashion [186, 188, 205, 206], and also extending such approaches to

anomaly detection [207]. To reduce model complexity, a competing approach follows a simple, yet effective

procedure [189]: Frame subtraction, followed by broadband-filtering to yield motion descriptors for action

recognition, while suppressing privacy attributes. A notable limitation of that approach is the relative

weakness of frame differences as motion descriptors compared to common alternatives, e.g. optical flow.

Another common limitation to all existing work is the lack of flexibility to select arbitrary private information

to hide, i.e. preserving privacy of only critical attributes, while maintaining the visibility of others, to avoid

obfuscation of visual cues that are essential to action classification.

Template matching. Building correspondences between templates and target images via matching is a

foundation for modern vision research, e.g. SfM [208], image correspondences [209], detection [210] and

tracking [211]. Features used in matching have advanced rapidly from primarily hand-crafted (e.g. [210, 212])

to learning-based convolutional [7] or transformers [102]. Our solution is inspired by techniques seen in

feature-based template matching. We apply their insights on matching templates to localize and selectively

obfuscate privacy-sensitive regions. More specifically, we adopt DINO-ViT features [142] and compute

similarities using the keys of the last attention layer from that architecture. Our use of DINO-ViT keys (rather
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than queries or values) is based on previous work finding them to perform best when applied to visual

correspondence [213, 214].
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Figure 5.2: Overview of Method. 5.2a We present a privacy module that builds atop three components: (i) a semantic template library that

contains attributes to be hidden, (ii) a descriptor matcher to localize template features in videos to be obscured and, (iii) an obfuscation
method that is sensitive with respect to motion present in the scene. 5.2b A semantic descriptor matcher based on DINO [142]-ViT [102]

keys is used to determine privacy salient regions in a video based on the template library. In our case, regions of interest correspond to

those that can identify a person; however, this component can be adapted for other privacy attributes through specification of different

templates. The result is a saliency map. 5.2c The saliency map is used as a weight to apply noise to the regions. The noise, however, is not

static, but is warped with optical flow with an initial noise pattern image, 𝑁(p, 1), for the purposes of preserving motion information in

the source video. The similarity maps of all aggregated relevant privacy attributes are used to weigh the noise and apply it to the input

image, obfuscating privacy sensitive information while not destroying the underlying temporal signal.

5.3 Technical approach

Our approach to privacy preserving action recognition is a stand alone module that operates by preprocessing

video that subsequently is input to arbitrary action and privacy recognition algorithms, i.e. it is independent

of the recognition algorithms and does not entail any retraining of those algorithms. Our method consists

of three key components; see Fig. 5.2a: (i) A template library that covers privacy attributes to be preserved,

(ii) a matcher that produces saliency maps between selected templates and images where privacy is to be

preserved and (iii) an obfuscator that uses the saliency maps to hide privacy attributes of concern in a

temporally consistent fashion to preserve motion in the video. The remainder of this section details each of

these components.

Template library

To obfuscate privacy sensitive regions in images in an interpretable fashion, we need an explicit set of

“attributes" to be hidden from the target video. Such a concept template library, T, can be built manually

choosing image patches corresponding to features one wishes to obfuscate. In this paper, we concentrate

on privacy attributes related to personal identification. Therfore, we use landmark anatomical features,

corresponding to detailed facial landmarks and the hand (Fig. 5.3 left: forehead, hair, eye, cheek, lips, hand) as

well as larger body parts (Fig. 5.3 right: arm, torso, legs). The choice to focus on preservation of human identity

is motivated by the fact that all three of our evaluation datasets define their privacy attributes on attributes

relating to person identity. Notably, however, such a template library easily can be extended depending on

the particular task at hand. For example, attributes pertaining to location (e.g. street signs, distinctive scene

objects) could guide development of a complimentary set of templates. In any case, given a template library,

a user can selectively combine templates to obscure attributes of concern in a particular application.

Formally, we define each template 𝜏𝑖 as an element in the set T = {𝜏1 , 𝜏2 , ..., 𝜏𝑛}. Further, let T̃ ⊆ T be the

subset of templates that the user selects from the library, T, for a particular subset of privacy attributes to be

preserved for a given dataset or application. Our manual approach to template selection leads to concepts

that are interpretable by design. In particular, we use two source images, shown in Fig. 5.3, one for small-scale

features on the face, and one for large regions, taken from the IPN [215] and SBU [216] datasets. We choose

these two datasets because of their complimentarity in template selection: IPN focuses on small scale features
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Figure 5.3: Template Library consisting of Patches Chosen from Anatomical Landmark Regions. These specific images are passed

through a DINO-ViT feature extractor. The keys, corresponding to spatial locations of the highlighted patches, are chosen as the

templates for matching to input images to obtain semantically similar regions for obfuscation.

Figure 5.4: Saliency Maps for Descriptors in the Template Library. The manual selection of these templates allows for interpretability of

the obfuscated parts of the image by design. The matched DINO-ViT features capture rich semantic information and allow for detailed

spatial localization due to the nature of vision transformers. These saliency maps can then be combined for obfuscating any combination

of templates depending on the task at hand.

(e.g. facial and hand), while SBU focuses on larger scale features (e.g. larger body parts), as detailed later

in Sec. 5.4. The choice of the particular template images is not critical to the functioning of our approach,

because we extract semantic features from the templates that are known to generalize well across images

instances [142], as described next.

Matching: Local patch descriptor templates

Semantic features. Our requirements for good features to match between privacy templates in our library

and frames in an action recognition video are straightforward: We require (i) semantically rich features

that generalize across (in our case) different individuals and (ii) high spatial resolution to perform privacy

obfuscation in a localized manner without destroying regions that are required for action recognition. We find

that DINO-ViT features fit our needs very well [125, 142]: (i) They have been trained to yield high similarity

for semantically related concepts (e.g. objects and their parts), while suppressing the similarity of unrelated

matters (e.g. background). (ii) They support local patch feature extraction over high resolution images

without losing global context. Elsewhere, DINO-ViT keys have proven especially useful in matching between

templates and target images [213, 214]. Following these advances, we use last attention layer DINO-ViT keys

computed from privacy templates (e.g. Fig. 5.3) to match against input images to compute privacy saliency

maps.

Privacy saliency matching. To find privacy salient regions in an input video, a similarity map, 𝑆, is

computed between each frame, 𝐼, in the video and the selected set of privacy templates, T̃. The image is tiled

with 𝑚 patches, 𝐼 𝑗 , 𝑗 ∈ {1, ..., 𝑚}, and for each patch DINO-ViT keys, K(𝐼 𝑗), are extracted. These features are

matched with DINO-ViT keys, K(𝜏𝑖), for all selected templates, 𝜏𝑖 ∈ T̃. Clipped cosine similarity is used to
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establish the saliency of each image patch according to

𝑠 𝑗 =
1

|T̃|

|T̃|∑
𝑖=1

max

(
0,
⟨K(𝜏𝑖), K(𝐼𝑗)⟩
∥K(𝜏𝑖)∥∥K(𝐼𝑗)∥

)
,∀𝑗 ∈ J1, 𝑚K, (5.1)

where ⟨·, ·⟩ is inner product and |T̃| is the cardinality of T̃, the set of selected privacy templates. Clipping

is used because only positive values imply salience. This calculation is performed for every patch in every

image of the video. Subsequently, the 𝑚 saliency patches are reassembled in the shape of the original image

to produce the final saliency map,

𝑆 = R(𝑠1 , ..., 𝑠𝑚 ; ℎ, 𝑤), (5.2)

with R a function that accepts image tiles, 𝑠 𝑗 , and reshapes them into their original image format of height ℎ

and width 𝑤. Note that a separate salience map, 𝑆, is calculated for each frame in a video of interest, 𝐼. The

entire process of feature extraction, matching and the resulting saliency maps are summarized in Fig. 5.2b.

Example saliency maps in Fig. 5.4 illustrate the ability of our approach to capture all of our templates in a

variety of scenarios.

Temporally consistent obfuscation

Our goal is to mask privacy sensitive regions in images to obfuscate them. If we were to apply masks to

every frame independently, then temporal information important to action recognition, e.g. motion of actors,

would be destroyed as well. We empirically document the issue in Sec. 5.4. In response to this challenge,

we follow previous work that presented a method for producing temporally consistent spatial noise across

videos that supported action recognition, while obscuring appearance information in single frames [217].

While the previous work applied noise patterns uniformly across entire frames, we instead weight them by

our privacy salience maps, 𝑆, to preserve as much context information as possible. The remainder of this

subsection details our approach, with an outline shown in Fig. 5.2c.

Noise pattern initialization. Let p = (𝑥, 𝑦) be image coordinates and 𝑡 time. We initialize a noise image,

𝑁(p, 1), with the same dimensions as a frame from the input video (i.e. ℎ × 𝑤 × 3), with ℎ height, 𝑤 width

and 3 the number of colour channels. The dataset mean, 𝜇, and standard deviation, 𝜎, are used to define a

uniform distribution from which individual pixel intensities are drawn according to

𝑁(p, 𝑡 = 1) ∼ U[𝜇 − 𝜎, 𝜇 + 𝜎]. (5.3)

Motion consistent noise. To create motion consistent noise the initial random frame, 𝑁(p, 1), is warped

forward with flow fields derived from the original video, 𝐼(p, 𝑡), as extracted by an optical flow algorithm.

Let v(p, 𝑡) = (𝑢(p, 𝑡), 𝑣(p, 𝑡)) be the flow field that maps points, p, in frame 𝑡 to those in frame 𝑡 − 1, with

𝑢 and 𝑣 the horizontal and vertical components of the flow. Then, a motion consistent noise sequence is

generated as

𝑁(p, 𝑡) = 𝑁
(
p + v(p, 𝑡), 1

)
(5.4)

with 𝑡 ∈ {2, ..., 𝑇} and 𝑇 the number of frames in the original input video.

Selective privacy obfuscation. The computed video sequence,𝑁 , shows no single frame appearance related

to the original video as it is random noise; however, when viewed as a video it reveals the motion present

in the original, c.f . [217]. Direct use of this synthesized video obscures privacy attributes; however, it also

obscures other context information that could be of use in action recognition. So, instead we selectively apply

𝑁 to every frame 𝐼 in the video by using the privacy salience maps 𝑆, according to

𝑂(p, 𝑡) = 𝐼(p, 𝑡) +
(
𝑆(p, 𝑡) ×

(
𝑁(p, 𝑡) − 𝐼(p, 𝑡)

) )
. (5.5)
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The resulting video, 𝑂, contains selectively obfuscated regions, built with interpretable templates by design

and contains motion information that (in principle) does not differ from the original input video.

5.4 Empirical evaluation

The privacy obfuscated video, (5.5), serves directly as input to action and privacy recognition. No specialized

development, training or other modification of the recognition algorithms nor adaptation of the privacy

preservation system is necessary. Indeed, a major difference compared to competing state-of-the-art ap-

proaches (e.g. [189, 200, 205]) is that we do not retrain networks with our obfuscated data, while they do retrain.

We exploit the fact that privacy attributes are generally independent from action recognition cues, which is

enabled by our unique selective obfuscation approach.

Protocol

Datasets. We use three datasets commonly used for investigating action recognition and privacy, IPN [215],

SBU [216] and KTH [218], which pose different challenges concerning both action and privacy.

IPN is a large-scale video-based hand gesture recognition dataset that consists of 50 actors performing 13

static or dynamic gestures, against three different backgrounds [215]. The performed gestures are used as the

action labels and actor genders are used as the privacy labels.

SBU is a video dataset depicting eight human interactions. Each video is a video of actor-pairs, in the same

laboratory environment. Action labels are derived from the actor interactions and the privacy attributes are

the unique pairings of seven different actors resulting in 13 privacy labels.

KTH has 25 actors doing one of six actions [218]. Each action is performed four times in different environments.

The six action classes are used for action recognition and 25 actor identities serve as privacy labels. In the

originally proposed splits, videos of any one actor are fully contained in one set, since the intent of the KTH

dataset was not concerned with actor identity recognition. For privacy identity, each actor must appear in

both sets; so, the data is split such that each action is performed twice by each person in the training set, and

once in the validation and test sets.

Metrics. Privacy recognition results are obtained following standard practice [189], averaging outputs over

multiple frames (32 for IPN and KTH, and 16 for SBU) from the same video. Action recognition results are

obtained by reporting the top-1 accuracy, as per convention [186, 187, 205]. It also is interesting to gauge

the trade-off between action and privacy recognition. Let 0 ≤ 𝑎 ≤ 1 be normalized action recognition

performance derived from dividing accuracy percentages by 100, and let 𝑝 be defined analogously for privacy

recognition. To quantify their trade-off we use a linear combination of 𝑎 and 1 − 𝑝 and define

𝑓𝜆(𝑎, 𝑝) = (1 − 𝜆)𝑎 + 𝜆(1 − 𝑝), (5.6)
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Figure 5.5: Obfuscation with a Single Attribute and the Impact on Performance. Attribute importance is dataset dependent. For example,

notice how the ’Hand’ template contributes to a large decrease in action recognition performance on IPN, as the action is determined

soley by the hand, whereas on SBU it does not. Optimally blue is high and red is low. Corresponding qualitative examples of saliency

maps for each individual template are shown in Fig. 5.4. Bold text along the abscissa of each plot indicates the templates used for the

final results.
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Table 5.1: Top-1 Accuracy for all Privacy and Action models on the original unmodified (source) videos, i.e. without privacy obfuscation.

Bold and underline indicate first and second best, resp. Number of frames and temporal sampling rate indicated as 𝑓 × 𝑟.

Action Recognition on Source Datasets

Network 𝑓 × 𝑟 IPN KTH SBU

C2D [87] 8 × 8 74.56 83.00 87.50

CSN [93] 32 × 2 91.73 88.33 90.91

E2S X3D L [217] 16 × 5 95.15 95.33 91.11

E2S X3D M [217] 16 × 5 89.38 92.33 86.36

E2S X3D S [217] 13 × 6 85.16 92.00 82.98

I3D [85] 8 × 8 83.15 89.67 82.95

MVIT[95] 16 × 4 88.00 90.00 92.55
R2+1D [88] 16 × 4 89.80 87.33 81.91

Slow [27] 8 × 8 85.76 89.00 88.64

SlowFast [27] 32 × 2 88.06 87.33 90.00

X3D L [28] 16 × 5 94.41 94.00 90.22

X3D M [28] 16 × 5 91.67 93.00 81.91

X3D S [28] 13 × 6 87.81 90.67 75.00

Average 88.05 90.15 86.31

Privacy Preservation for Source Datasets

Network IPN KTH SBU

ResNet18 [168] 88.46 87.33 90.43

ResNet50 [168] 92.31 90.00 96.81
ResNet101 [168] 94.23 94.00 84.04

ViT𝑏/16
[102] 94.23 94.00 79.79

ViT𝑏/32
[102] 90.38 94.00 78.72

Average 91.92 91.87 85.96

with 0 ≤ 𝜆 ≤ 1 weighing the relative importance of action recognition vs. privacy. This metric is suitable to

create a linear ranking as 𝑎, and (1 − 𝑝) are optimally 1 ensuring 𝑓𝜆 ∈ [0, 1]. If privacy or action recognition

are not equally important, then they can be weighted accordingly; e.g. if privacy is critical, then 𝜆 can be

increased. In our main experiments we use 𝜆 = 0.5, abbreviated as 𝑓0.5 in Tab. 5.2 and show an ablation over

different values of 𝜆 in Fig. 5.7.

Competing obfuscation approaches. We briefly describe Naive Baseline approaches that solely rely on

full-frame pixelation and bluring as well as actor masking that have been studied across the literature [187,

188]. We also highlight other State-of-The-Art approaches (SoTA) [189, 200, 205] that we compare against.

Visual examples of the SoTA approaches are shown in Fig. 5.6; also shown are optical flows of consecutive

frames for qualitative comparison.

Mask Obfuscation. All our datasets involve people performing actions and the privacy attributes are related

to people. A naive way to preserve privacy in such videos is to completely mask out the actors. To do so,

we use the YOLOv8 implementation [17] based on the original YOLO [16]. We report results based on the

masked region filled with the mean intensity of the image covered by the mask.

Pixelation. Pixelation applies average pooling over regions of dimensions 𝑥 × 𝑥 on the input image sequence.

We choose two scales of 𝑥 ∈ {4, 16} for the patch-size to pool. In the result tables these methods are

abbreviated as Pix𝑥×𝑥 .

Blur. Blur applies a Gaussian blur to the images that have been rescaled to 224 × 224 pixels. The parameters

of the Gaussian are the kernel size, 𝜅, and the standard deviation of the kernel, 𝜎. We choose values for weak

and strong blurs,
𝜅=13

𝜎=10
and

𝜅=21

𝜎=10
, respectively, as consistent with other work on obfuscation methods [205].

ELR initially reduces frames to Extreme Low Resolution and subsequently applies a set of learned inverse

super-resolution transforms to support action recognition [200].

ALF is an Adversarial Learning Framework for action recognition that takes into account a privacy bud-

get [205].
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ELR [201] BDQ [189] ALF [205] Ours

Figure 5.6: Optical flow from two consecutive frames from competing approaches. Only our approach retains dynamic information that

supports high-quality optical flow recovery. Top row: Single frames as processed by comparison algorithms. Middle row: Full frame

optical flow recovery. Bottom row: Zoomed optical flow details. Optical flow shown in Middlebury colour coding [219].

BDQ is a privacy-preserving encoder that sequentially Blurs, Differences and Quantizes frames. The

blur and quantization parameters are learned to maximize action recognition while minimizing privacy

recognition [189].

Notably, all the compared SoTA methods operate across entire frames (i.e. without selectivity) and have

limited interpretability due to their learning-based obfuscation.

Implementation details. Training. No large scale dataset exists that allows for joint training of action

and privacy classification on the same videos. Therefore, we pretrain our action and privacy networks

on Kinetics400 [85] and Imagenet1k [8], respectively, and then finetune for specific datasets. We use the

AdamW [47] optimizer with a learning rate of 3𝑒−4
. The networks are trained with a patience scheme of 100

epochs that monitors the loss on the validation set. For action recognition, videos are temporally uniformly

subsampled according to the architecture (Tab. 5.1, ‘ 𝑓 × 𝑟’ column).

Note that we never perform any training on videos obfuscated by our approach. To implement warping,

(5.4), we use pretrained RAFT to extract optical flow [70].

Privacy template selection. Our approach affords selective combination of a predefined set of privacy

templates for a given dataset or application. For the experiments, we choose a subset of templates, T̃, from

our complete identity preserving template library, T, shown in Fig. 5.3, to optimize performance on a given

dataset. Figure 5.5 shows template-wise performance based on both action recognition and privacy for each

dataset. For SBU and KTH, action recognition is stable with respect to templates; however, the same four

templates notably reduce privacy recognition. For consistency on IPN, we also select the four templates

that most reduce privacy recognition, even while preserving action recognition; although, the distinction

is less striking. This selection process results in templates T̃ = {torso, arm, leg, hair} for SBU and KTH vs.

T̃ = {cheek, eyes, forehead, hair} for IPN. Our code yields more results on the overlap of individual saliency

maps.

Runtime. The constant overhead to produce our obfuscated videos is ≈100𝑚𝑠/frame on a NVIDIA RTX4080

GPU.

Results

We evaluate our approach to privacy preserving action recognition on 13 different action recognition models

and five different privacy attribute recognition models. Competing approaches evaluate on at most five
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Table 5.2: Comparison between Ours vs. Naive Baseline (top) and SoTA (bottom) Approaches as Top-1 Accuracy for both Action and

Privacy labels, as well as 𝑓0.5 Introduced in Sec. 5.4. We show Ours and Naive Baseline results averaged across all recognition algorithms

presented in Tab. 5.1. Competing SoTA approaches only present results on one specific algorithm for action recognition (I3D [85]) and

privacy attribute detection (ResNet50 [168]) as those approaches are network specific. To showcase a fair comparison we also present

results with the same single recognition algorithms indicated as “Ours †". First and second best results indicated by bold and underline,

respectively. Relative performance delta (Δ) is indicated in green (improvement) and orange (tie) between best and second best method.

Results across Naive Baseline obfuscation methods

IPN KTH SBU

Method ↑Act ↓Priv ↑ 𝑓0.5 Δ ↑Act ↓Priv ↑ 𝑓0.5 Δ ↑Act ↓Priv ↑ 𝑓0.5 Δ

Original 88.05 91.92 0.48 90.15 91.87 0.49 86.31 85.96 0.50

Masking 36.45 64.87 0.36 37.54 35.22 0.51 52.62 30.1 0.61

Pixelate
4×4

85.59 73.65 0.56 83.64 59.39 0.62 73.24 46.27 0.63

Pixelate
16×16

49.81 65.76 0.42 38.33 38.43 0.50 25.53 29.84 0.48

Blur
𝜅=13

𝜎=10
(weak) 76.24 67.40 0.54 44.59 37.73 0.53 72.75 35.69 0.69

Blur
𝜅=21

𝜎=10
(strong) 58.80 65.92 0.46 30.38 31.84 0.49 57.77 34.21 0.62

Ours 87.11 51.93 0.68 +0.11 88.67 5.46 0.92 +0.29 86.74 13.19 0.87 +0.18

Results across SoTA obfuscation methods

BDQ [189] 81.00 59.00 0.61 91.11 7.15 0.92 84.04 34.18 0.75

ALF [205] 76.00 65.00 0.56 85.89 19.27 0.83 82.00 48.00 0.67

ELR[201] s=16 70.82 64.32 0.53 91.22 88.86 0.51 96.27 82.97 0.57

ELR[201] s=32 52.96 63.29 0.45 85.57 82.56 0.52 92.42 64.89 0.64

ELR[201] s=64 31.63 62.70 0.34 56.21 58.35 0.49 80.05 43.61 0.68

Ours † 85.25 51.67 0.67 +0.06 89.44 4.31 0.93 +0.01 84.04 11.70 0.86 +0.11
Ours 87.11 51.93 0.68 +0.07 88.67 5.46 0.92 ±0.00 86.74 13.19 0.87 +0.12

action models [189, 200, 205]. Table 5.1 shows results on the original videos from IPN [215], SBU [216] and

KTH [218], i.e. without any privacy preserving processing. Table 5.2 shows results comparing our approach

vs. Naive Baselines and SoTA. Comparison is given as the average across recognition algorithms presented

in Table 5.1. Notably, while our approach compromises at most 1.48% action recognition accuracy compared

to performance on the original video (88.67% vs. 90.15% on KTH), it always greatly improves privacy.

Naive Baselines. Compared to the baselines, our approach scores highest with respect to the 𝑓0.5 metric

across all three datasets: IPN (+0.11), KTH (+0.29), and SBU (+0.18). Naive Baselines show that action

recognition correlates highly with privacy performance, as 𝑓0.5 hovers around 0.5. The notable exception is

Pix4×4 that performs well on IPN and KTH, and is the second best Naive Baseline on SBU. A notable benefit

of all these approaches is that they do not require retraining of the recognition algorithms. Still, none have a

selective ability to obfuscate only certain parts.

State of the art. A noteworthy difference between our vs. the alternative SoTA approaches is that they

only work with the recognition algorithms on which they were trained. While this fact disadvantages our

approach, as it lacks such retraining, it still outperforms the competing methods on all datasets: IPN (+0.06),

KTH (+0.01), and SBU (+0.11).

It is valuable to consider obfuscation approaches in terms of the relative importance of action recognition

vs. privacy preservation. Figure 5.7 compares results for the SoTA approaches as that trade-off is varied in

terms of 𝑓𝜆, (5.6). The sweep of 𝜆 shows that our obfuscation approach performs better than any competing

approach across the entire range. Especially with increasing 𝜆, the gap to other approaches widens as more

emphasis is put on privacy preservation.

Importance of selective obfuscation. Our approach is unique in its ability to selectively obfuscate particular

regions within a video based on specific privacy attributes. This ability yields two benefits: (i) Selectivity aids

in interpretability. Each selected template results in a saliency map, (5.2), which allows for visual inspection
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Figure 5.8: Comparing Temporally Consistent vs. 𝑖𝑖𝑑 Obfuscation for Action Recognition and Privacy Preservation. Action recognition

performance decreases if noise is not temporally consistent.

of what information is being obscured. Figure 5.4 highlights this benefit as the heat maps reveal the degree

of obfuscation to be applied on a template-by-template basis. (ii) Individual privacy templates can be chosen

and combined for best performance; see Fig. 5.5. Depending on the dataset, different privacy templates

differently impact the performance of privacy and action recognition. Action recognition on SBU and KTH

is relatively robust to privacy template selection; however, privacy preservation is best when a subset of

templates (torso, leg, arm, hair) is selected and the rest remain unobfuscated. This fact derives directly from

the saliency calculation, (5.1): If multiple individual saliency maps have small values, then other strong

responses are scaled down in the combined final saliency map. Subsequently, this effect leads to less noise

being applied in our selective obfuscation, (5.5), which can deteriorate privacy preservation. In contrast,

action recognition on IPN is compromised if the hand template is selected (as expected with a gesture centric

dataset), which documents that simply obfuscating the entire person leads to inferior action performance

compared to selectively applied obfuscation.

Importance of motion consistent noise. Action recognition is complicated as different datasets, and even

individual actions within a dataset might require different recognition capabilities and can rely to different

degrees on the modeling of motion [149]. This uncertainty on the role of motion in action recognition is

exacerbated by the fact that different deep learning-based architectures are successful in capturing motion to

varying degrees [220].

To see the importance of our proposed motion consistent noise for privacy preservation while maintaining

good action recognition, we compare to another version of our pipeline that obfuscates video frames using

independent, identically distributed (𝑖𝑖𝑑) noise; see Fig. 5.8 and project page for video results. For all datasets,

action recognition performance decreases if the noise is 𝑖𝑖𝑑. This result is sensible, because the 𝑖𝑖𝑑 noise

does not capture the temporal dynamics of the source video. In contrast, privacy preservation is robust

to noise in either case. There is less impact on IPN action recognition, as the critical hand motion is never

obfuscated, which underlines the importance of selective masking. Further insight on why motion consistent

noise supports better action can be had through consideration of Fig. 5.6, where the ability of such noise to

support optical flow estimation is illustrated.
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Limitations. Inevitably, there will be a trade-off between action recognition and privacy, as relevant

information may be shared. In our approach, that trade-off could happen because our temporally consistent

noise maintains dynamic information important for action recognition; however, it also might support motion

based identification, e.g. gait recognition. Current protocols in privacy preserving action recognition do

not consider motion-based identification. However, gait and related motion-based measurements are weak

biometrics [221]; so, favouring action recognition may be apt. Moreover, if it becomes a concern, then it may

be possible to apply motion perturbations that impede personal identification while maintaining action

recognition.

5.5 Conclusion

Our work highlights that it is not necessary to train action recognition and privacy networks in an adversarial

fashion for effective obfuscation of privacy attributes while maintaining strong action recognition performance.

We show that a system based on local privacy templates, deep features that capture template semantics

and selective noise obfuscation that is animated with source video motion can uphold privacy without

hindering action recognition. Our approach is unique compared to alternative recent approaches in terms

of interpretability and independence from particular action and privacy recognition algorithms. Our nine

manually chosen templates, in combination with our proposed obfuscation technique outperforms other

state-of-the art approaches across three different datasets.
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Appeared as
"Representing Objects in Video as Space-Time Volumes
by Combining Top-Down and Bottom-Up Processes"

in WACV 2020.

As top-down based approaches of object recognition from video are getting more powerful, a structured

way to combine them with bottom-up grouping processes becomes feasible. When done right, the resulting

representation is able to describe objects and their decomposition into parts at appropriate spatio-temporal

scales. We propose a method that uses a modern object detector to focus on salient structures in video, and a

dense optical flow estimator to supplement feature extraction. From these structures we extract space-time

volumes of interest (STVIs) by smoothing in spatio-temporal Gaussian Scale Space that guides bottom-up

grouping. The resulting novel representation enables us to analyze and visualize the decomposition of an

object into meaningful parts while preserving temporal object continuity. Our experimental validation is

twofold. First, we achieve competitive results on a common video object segmentation benchmark. Second,

we extend this benchmark with high quality object part annotations, on which we establish a strong baseline

by showing that our method yields spatio-temporally meaningful object parts. Our new representation will

support applications that require high-level space-time reasoning at the parts level.

Keywords: Video Object Part Segmentation, Spatio-temporal Gaussian Scale Space, Action Tubes

https://f-ilic.github.io/STVI

https://f-ilic.github.io/STVI
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Figure 6.1: Our approach (c) bridges the conceptual gap between low-level video representations such as (a) TSPs [222] which tend to

fall apart over time and do not model objects directly, and instance segmentation methods such as (b) Mask R-CNN [15] which lack a

decomposition into parts, and temporal consistency. Our unsupervised approach is able to detect salient object parts based on motion

and appearance. Sequence taken from SegTrack v2 [223].

6.1 Introduction

Recent research has achieved a lot of progress in Video Object Segmentation, both, with respect to the actual

segmentation accuracy in each frame, but also with respect to the temporal consistency of the tracked object. A

neglected sub-task is the separation and decomposition of generic objects into their salient components, where

object parts can often be inferred by their difference in motion or appearance w.r.t. their surroundings.

The core novelty of our method is the principled local use of spatio-temporal Gaussian Scale Space. The

enabling top-down methods include a generic instance segmentation framework to detect objects of interest,

and an optical flow estimator to track the object and to extract motion information. These top-down anchors

are used to guide the bottom-up grouping of features, extracted from appearance and motion in Gaussian

Scale Space. This generates consistent regions, which correspond to meaningful object parts. See Fig. 6.1(c) as

to how our approach models different parts of a running girl with different spatio-temporal tubes (same

color means same tube). Compare this with Fig. 6.1(b), where each object instance is modeled by a singular

object tube, and Fig. 6.1(a) where Temporal Superpixels (TSPs) provide no spatial grouping, and fall apart

over time. Our approach is able to extract the parts of objects from video in a completely unsupervised

manner, including object localization, tracking, and automatic selection of spatio-temporal scales. If required,

manual scale selection allows for the explicit extraction of low or high frequency features from motion and

appearance structures, see Fig. 6.2.

Such a general representation at the object and parts level could be highly desired in many applications of

video understanding, e.g. to analyze motion patterns in sports, to classify actions, or to describe complex

dynamics in cluttered scenes with many moving objects. To the best of our knowledge, there is no comparable

approach that segments individual objects from video into their parts based on their spatio-temporal

saliency.

coarse −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ fine

Figure 6.2: STVIs extracted at increasing spatial and temporal scales from a jumping-jack sequence. Note how finer scales capture more

detail at the cost of temporal and spatial coherence, whereas coarser scales model more fundamental patterns. Two scales have been

selected manually, the representation in the middle is achieved by automatic scale selection.
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6.2 Related Work

Frame-based object proposals, e.g. the region proposal network (RPN) [14] provide bounding boxes that

inevitably contain background. With the emergence of high quality datasets for instance segmentation [12, 223,

224], methods such as Mask R-CNN [15] improve on those approaches by not only providing tight bounding

boxes but also the segmentation mask. However, these masks tend to be imprecise at the object boundaries

and temporal correspondence is hard to obtain, especially when partial occlusions occur; therefore, simple

temporal stacking of masks from individual frames does not suffice to represent objects in video reliably.

Approaches that inherently work on video data, such as SiamMask [225] are able to generate temporally

consistent object segmentations through utilizing a Siamese network structure for matching/tracking objects

in adjacent frames [226, 227], only requiring the initial object bounding box. Such methods, however, still yield

monolithic segmentation masks where the notion of individual salient object parts is not incorporated.

Many excellent solutions exist for object recognition, as well as two-stream architectures for video analysis

that use appearance and motion information [20, 84]. These approaches achieve close to human performance

in object and action recognition, and object tracking. The stunning performance, however, comes at a price:

Besides the huge effort required to train these networks, what they learn is represented implicitly in the

millions of parameters that are tuned and thus make it exceedingly difficult to build explicit reasoning atop

of them.

One main benefit of our method is that it can recover salient object parts in an unsupervised manner via

bottom-up grouping processes. Varquez et al. [228] propose a multiple hypothesis video segmentation

algorithm that operates on superpixel flow, in which different superpixelations are created from which

overlapping and persistent regions are matched. This indicates that these regions must form some sort of

salient area, and are therefore spatio-temporally significant structures. Generally, superpixel/voxel algorithms,

such as Simple Linear Iterative Clustering (SLIC) [229, 230], are used to abstract individual pixels into larger

groups to reduce the complexity of visual tasks [231]. Temporally Consistent Superpixels (TCS) [232] and

Temporal Superpixels (TSP) [222] are for instance such approaches that leverage superpixels created by

clustering in the appearance-space. These are considererd low-level video representations as they extend

image based superpixels to the video domain, modeling the entire video-volume. Therefore, neither objects

nor their motion are modeled explicitly in such representations. While TCS and TSP consider appearance,

Levinshtein et al. [233] work with optical flow and extract spatio-temporally closed regions (STC), which

is an important step to ensure a temporally consistent representation. The aforementioned approaches

are impressive in their own right, but they do not operate at the object level, and instead describe the

whole scene with spatio-temporal structures. This gap between object representations and lower-level video

representations exemplifies the current void that we aim to fill, and which we show in Fig. 6.1.

We deem the notion of scale, i.e. levels of detail at which an object is represented, an essential aspect of a

good representation. We employ the well researched Spatio-temporal Gaussian Scale Space [234, 235] to

achieve our goal of variable object scale. In essence, videos at different scales can be obtained by smoothing

the video-volume with Gaussians of varying 𝜎 in space, and 𝜏 in time. Our method extends scale-space to

the object level to estimate appropriate spatial and temporal scales at which an object is represented and

decomposed.

Early work conducted by Gorelick et al. [236] demonstrated the feasibility of extracting motion-tracks of

objects from clean video, and using them to classify human actions such as jumping, running, and walking.

There are even object-based spatio-temporal representations [237] that, similar to our approach, use object

detectors as “top-down anchors”. Other approaches such as [238] use optical flow to anchor an object.

However, the distinguishing feature and novelty of our approach is that we are able to represent salient

objects in a decomposable, well-behaved, and scalable manner. Seguin et al. even note that “most of the visual
unpleasant artifacts” [of their approach] “are due to the use of superpixels” ([237] caption Fig. 4); this observation

holds true for most of the bottom-up driven grouping processes. We aim to avoid such artifacting, and to

produce smooth space-time volumes which render them feasible for an incorporation in other applications.
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Figure 6.3: The pipeline of our approach is split into three distinct parts. The preprocessing uses an off-the-shelf object detector and a

dense optical flow estimator; the per object ROI is used to crop appearance and flow around the current object of interest which results

in an object centered subvolume. The backbone then generates spatio-temporally salient structures by smoothing in spatio-temporal

scale space with parameters estimated by the object size and motion. Groups of coherent spatio-temporal features are then selected by

utilizing mask predictions every n-th frame. This naturally tends to yield spatio-temporally significant regions in the context of the

object. Hence, our method is able to handle multiple salient objects per video by running multiple times, with almost no overhead, as

most of the computational complexity resides in the feature extraction, which can be shared among the objects.

6.3 Space-Time Volumes of Interest

Our approach uses temporally sparse instance segmentation masks and optical flow to build a representation

of salient objects and their components, by locating and extracting spatio-temporally salient regions. These

regions form structures that resemble tubes which model the spatial and temporal extent of objects and their

components over time. Instance masks are used to focus on the objects of salience - akin to an attention

mechanism, which we refer to as “anchoring”. These masks are provided by Mask R-CNN [15], trained

on COCO [12]. Dense optical flow provided by FlowNet2.0 [239] is used to track the object until the next

anchor mask is supplied. It is also used to cancel background motion and to support the generation of

spatio-temporal tubes, which are extracted by clustering appearance and motion information on the anchored

object. The pipeline of our proposed approach is shown in Fig. 6.3.

Preprocessing

Mask R-CNN is used in the first frame to detect objects of interest, and provides us with an initial Region of

Interest (ROI). Because we evaluate our approach on datasets that only contain one annotated object, we

restrict our approach to that one object per video, though it is capable of handling multiple objects of interest

per video by running multiple times. Dense optical flow is computed for every frame pair to track the object,

and will later be used to ensure temporal consistency. Every 𝑛 frames another ROI is supplied to account for

drift over time. By stacking the tracked ROIs we create a sub-volume aligned along each of the ROI’s center

points, and padded to fit to the dimensions of the largest ROI in the video. This yields an object-centered

sub-volume around the object.

Because optical flow deals with apparent motion in video, one cannot infer the motion of objects in the

scene, but only the relative motion between scene, camera and homogeneously moving regions. We are only

interested in representing salient objects, and therefore cancel out the optical flow w.r.t. the object of interest.

We do this by subtracting the background’s optical flow:

𝐹𝑖 =
[
𝐹𝑖 − 𝑚𝑒𝑎𝑛(𝐹𝑖 ⊙ ¬𝑀𝑖)

]
𝑜𝑏 𝑗
, (6.1)

where

[
·
]
𝑜𝑏 𝑗

denotes the cropping of the volume to the sub-volume around the salient object, 𝐹𝑖 the optical

flow at frame 𝑖, 𝑀𝑖 the binary segmentation mask at frame 𝑖, and ⊙ the element-wise multiplication.

The preprocessing step results in two sub-volumes of identical extent (x,y, and t). The first one contains

appearance whereas the second one contains the object flow, 𝐹̂𝑥 and 𝐹̂𝑦 . These two sub-volumes are combined,

such that each point in the sub-volume holds 8 values: position (𝑥, 𝑦, 𝑡), color (𝐿, 𝑎, 𝑏) in the Lab color-space,
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and flow (𝐹̂𝑢 , 𝐹̂𝑣). With the preprocessing complete, cf. Fig. 6.3, we proceed with the extraction of salient

tubes.

Backbone

Spatio-Temporal Smoothing The 8 dimensional feature-volume is processed at the object level, in a

bottom-up fashion. To facilitate the creation of connected intra-frame structures of an object, we smooth

spatially; to create structures that are temporally consistent and represent the same region even through slight

changes in appearance or partial occlusions, we smooth temporally. The combination of these smoothing

operations provides a means to weight and emphasize certain object- and motion-patterns in the sub-volume.

Gaussian Scale Space with its extension to the spatio-temporal domain and the notation of a space-time scale

space family L(·) as proposed by Laptev and Lindeberg [77] is a cornerstone of our approach:

L(·; 𝜎2 , 𝜏2) = 𝑔(·; 𝜎2 , 𝜏2) ∗ 𝑓 (·), (6.2)

where the input 𝑓 is convolved with a spatio temporal Gaussian filter 𝑔:

𝑔(𝑥, 𝑦, 𝑡; 𝜎2 , 𝜏2) = 1√
(2𝜋)3𝜎4𝜏2

· 𝑒
−(𝑥2+𝑦2)

2𝜎2
− 𝑡2

2𝜏2 . (6.3)

Here 𝜎 determines the width of the spatial kernel (same for 𝑥, 𝑦 direction), and 𝜏 the width along the

temporal dimension. With large 𝜎, 𝜏, only lower-frequency spatio-temporal structures remain; convolution

with small 𝜎, 𝜏 preserves the higher-frequency structures. While it is well-known that particular scales

globally emphasize particular space-time structures, we explore the power of scale space locally to support

the decomposition of objects into meaningful components.

Grouping spatio-temporally salient regions Following smoothing, we cluster the sub-volume containing

appearance and optical flow information, encoded as 8-dimensional vectors, see Eq. 6.4. We apply SLIC

clustering to the x,y,t sub-volume which contains the feature vector, 𝜙(𝑥, 𝑦, 𝑡), at each location:

𝜙(𝑥, 𝑦, 𝑡) =

𝛼(𝑥, 𝑦, 𝑡)𝑇
(𝐿, 𝑎, 𝑏)𝑇
𝛽(𝐹̂𝑢 , 𝐹̂𝑣)𝑇

 dimensionality: 8 × 1 . (6.4)

The scalar values 𝛼, 𝛽 allow us to stretch and compress the sub-volume in which SLICs are generated. High

values of 𝛼 create more compact regions by prioritizing spatial proximity, whereas 𝛽 is a trade-off between

image intensities and flow components, with higher values prioritizing the flow component. We do not

enforce spatial connectivity during clustering. Since we work in the 2D projection of 3D data, objects that are

connected in 3D might not appear to be in 2D. This more general approach results in tubes that might appear

disconnected in individual frames, but are connected somewhere in the temporal sequence. Later additional

reasoning could be added for splitting or merging individual tubes.

Tube Selection The smoothed and clustered volume, A, contains clustered spatio-temporal features that

we call tubes (𝑣𝑖), i.e. {𝑣1 , ..., 𝑣𝑛} ∈ A. In most cases background clutter is present, making it necessary to

discard some tubes.

We do this by using instance masks from Mask R-CNN every 𝑛-th frame, referred to as M. We compute the

overlap of each tube with M and add it to the set of STVIs if more than a certain (volumetric) threshold, 𝜔, is

contained. This guarantees that the selected structures are temporally coherent, because they are contained

within the instance masks over many frames, see Fig. 6.4.

In our experiments, we verified that tube selection is insensitive to the threshold parameter 𝜔 if it is chosen

within 0.5 ≤ 𝜔 ≤ 0.9. This can be attributed to the short videos that we work with (usually around 80 frames),
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Figure 6.4: We select tubes from the clustered spatio-temporal features A, by intersecting individual tubes with the instance masks M,

which are extracted every 𝑛 frames. The remaining tubes (STVIs) model the object and its parts. Lower values of 𝑛 improve the quality

(more instance masks), but also incur a larger run-time penalty. In this work we choose 𝑛=20.

where single tubes are able to capture and track parts of objects through the whole sequence. In all our

experiments reported, we set 𝜔 = 0.7. As video length increases, 𝜔 needs to be decreased, to allow for tubes

that approximate the object well through one section of the video but do not persist over the entirety of the

video. Another possible way to deal with longer videos is to split them into shorter chunks. The chunks

would then present good short-term volumes, which would need to be merged. We leave this for future

work.

Parametrization The parameters to process a video can be estimated based on the appearance and motion

of the object in the video alone. This means that our approach can be run without human interaction

(0-Parameter), which is what we use for evaluating our method. However, the parameters can be fine tuned

based on the application; e.g. reducing the temporal scale for high-frame-rate footage, or forcing coarser

spatial scales. Ablation experiments in which we show the influence of each mentioned parameter are

performed in Section 6.4.

▶ The spatial scale 𝜎 determines the amount of spatial smoothing that is applied, and is symmetric in

the 𝑥, 𝑦 direction. It is set proportial to the object’s size, and defaults to the radial approximation, i.e.,

half of the diagonal of the average bounding box around the object.

▶ The temporal scale 𝜏 determines smoothing along the temporal axis and is proportional to the

maximum object flow. By default we try to capture all the motion of the object, and therefore set

the temporal scale according to the largest object motion. However, to be robust to outliers, the 95
𝑡ℎ

percentile of | |𝐹̂ | | is used.

▶ The two clustering coefficients 𝛼, 𝛽 as introduced in Eq. 6.4 can be used to prioritize either the color-

or the flow-components. By default they are set proportional to the spatial and temporal scales (𝛼 ∝ 𝜎,

𝛽 ∝ 𝜏).
▶ The maximum number of components 𝑘 determines into how many spatio-temporal tubes the object

may be decomposed at most. For our experimental evaluation, 𝑘 is set to 15, which is suitable for

common object categories, as demonstrated in Section 6.4.

Postprocessing

STVIs are visualized as sliced tubes that, when taken together, model the space-time extent of an object.

In contrast, other approaches [236, 240], show object- and motion-tracks as 3D meshes, only showing the

hull of the space-time object segmentation. Our visualizations show the different parts of an object, and are

especially useful because they allow for a slicing along any of its dimensions, emphasizing motion patterns

by looking at different cross-sections, see Fig. 6.5.

We can also switch between object-centered and viewer-centered perspective, see Fig. 6.6. Since we obtain

individual object parts, such an object centered perspective can reveal relative motion w.r.t. the objects’

centroid.
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(a) t-slices (b) y-slices (c) x-slices

Figure 6.5: Interesting patterns revealed by slicing along any of the STVI’s dimensions; e.g. the oscillating motion of the legs in (b).

(a) Viewer-centered (b) Object-centered

Figure 6.6: The trajectory w.r.t. the observer is shown in (a). The relative motion of object parts w.r.t. the object centroid is shown in (b).

This is useful because objects are represented as the sum of their parts, and not just as instance masks. For instance, notice the roller

blades that move towards the center of the object axis during the jump.

6.4 Experiments & Results

Our experimental validation is split into two major parts:

1) Conventional Video Object Segmentation on the DAVIS [241] dataset, which provides excellent ground

truth masks, using well established metrics. In addition, we provide a detailed ablation study.

2) An evaluation of the automatic detection of object parts, for which we extend DAVIS with high-quality,

pixel accurate segmentations masks - DAVIS Parts. This new database it is to our knowledge the first Video

Object Part Segmentation dataset with pixel accuracy. We evaluate all competing methods on this dataset with

metrics that allow us to establish a first baseline for unsupervised object part detection and segmention.

Video Object Segmentation - Evaluation

The metrics we use to evaluate spatio-temporal object representations have to cover a wide range of

characteristics. The obvious candidates are segmentation metrics. We also choose to include metrics that

quantify interframe contour consistency:

▶ 3D Segmentation Accuracy (ACC), and Undersegmentation Error (UE), measuring the fraction of

correctly identified pixels belonging to the object, and the fraction of pixels extending past the object

boundary, respectively, introduced in [242]

▶ Normalized Temporal Extent (TEX) introduced in [222], measuring how long the generated tubes

persist in time.

▶ The Jaccard index J [243] measuring region similarity and the F-measure F [241, 244] measuring

contour accuracy.

Because lower-level representation approaches such as as TSP [222], TSC [232], SLIC [230] and STC [233]

model the whole video volume and not only the objects, a slight adaptation is needed to select appropriate

supervoxels which correspond to the objects. We employ the same tube selection process as described in

Section 6.3, where we use an intersection criterion w.r.t. the Mask R-CNN segmentation to decide which

individual supervoxels are selected for the final object representation. For the evaluation we consider two

ways to select the tubes: using masks 1) in the first frame, and 2) every 20 frames, in the following denoted by
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Table 6.1: Our method provides competitive results across the board on the DAVIS dataset, and sets a very strong baseline w.r.t. TEX.

Our method also achieves the lowest Undersegmentation Error, at the cost of a slightly decreased Accuracy. Other methods that perform

high w.r.t. Accuracy tend to generate instance masks that are coarse and blob like.

Method ACC ↑ UE ↓ TEX ↑ J↑ F↑
MRCNN [15] 0.82 0.29 — 0.62 0.63

SiamMask [225] 0.86 0.28 — 0.69 0.67

0.30 0.10 0.69 0.27 0.24

SLICO [230] O 0.33 0.12 0.71 0.29 0.25

𝑘100 0.32 0.23 0.62 0.27 0.28

𝑘100, O 0.44 0.12 0.46 0.41 0.37

𝑘800 0.38 0.05 0.46 0.36 0.37

TSP [222]

𝑘800, O 0.63 0.03 0.39 0.61 0.60

0.58 0.15 0.87 0.46 0.56

Ours O 0.78 0.03 0.93 0.66 0.68

the O symbol. We also include orthogonal - currently more popular - approaches that do not rely on explicit

bottom-up grouping processes, to put the obtained results into perspective: Mask-RCNN [15] which yields

framewise full object masks and bounding boxes and SiamMask [225] which yields temporally consistent

object segmentations. Note that these methods are unaware of part decomposition.

Table 6.1 shows the evaluation of the methods on the DAVIS [241] benchmark dataset. We consider Mask

R-CNN trained on COCO [12], a single frame segmentation baseline. TEX is left blank, because the generated

frame segmentations are not temporally connected. SiamMask yields temporally connected segmentation

masks, however, because it does not provide object components, but rather a single instance segmentation,

the temporal extent of the single tube representing the whole object is rather meaningless, and also left blank.

SLICO, the 0-Parameter SLIC is also tested as a simple baseline. TSPs, a more sophisticated bottom-up video

representation are evaluated in variations 𝑘100 and 𝑘800 which refers to the free hyper parameter 𝑘 which

determines the number of components per frame.

Our results show that our approach establishes a very strong TEX score of 0.93 outperforming the next best

approach by a considerable margin of 22 percentage points. TSP𝑘800 and our method achieve a stunning UE

of only 0.03, almost an order of magnitude better than Mask R-CNN and SiamMask. This large UE of Mask

R-CNN - indicating that larger than necessary masks for objects are created - also tends to result in a higher

ACC, as it is more likely to cover the object, if the mask is larger in the first place.

We group all 50 DAVIS videos into five “meta-classes”, i.e. Human, Animal, Bike-like, Car-like, and

Miscellaneous. Class specific metrics are shown in Table 6.2, and provide insights into how the algorithms

differ: The UE of the class “Bike-like” is considerably higher for Mask R-CNN and SiamMask than for any

other class. This can be attributed to the data that both of these networks were trained on, which causes them

to generate blob-like masks that segment whole bike wheels as discs. Our approach, on the other hand, does

not have this tendency, but rather generates slightly too small regions, because of the non-edge preserving

spatial and temporal smoothing that is applied.

Video Object Segmentation - Ablation Study

During ablation, Fig. 6.7, one parameter is subject to changes within a certain range, while the others are

selected automatically, see Section 6.3.

We observe that increasing 𝜎 has the effect of decreasing ACC, decreasing TEX, and no change in UE. This is in

line with our intuition that spatial low frequency tubes are worse at segmentation and tracking. Nonetheless,

they enable us to represent complex objects at coarser scales with fewer and smoother tubes. Coarser temporal

scales (larger 𝜏) on the other hand correspond to slightly higher TEX, and considerably lower ACC, and
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Table 6.2: The detailed per class performance of the tested approaches shows no large variation in the ranking of the different methods

purely based on class. This stability shows that the newly curated DAVIS Parts is a useful dataset for the segmentation of object and their

parts and is a suitable dataset for benchmarking approaches that concern themselves with video object segmentation.

Metric Method Human Animal Bike-like Car-like Misc.

MRCNN [15] 0.85 0.87 0.86 0.84 0.86

SiamMask [225] 0.82 0.90 0.88 0.84 0.89
TSP [222] 𝑘800 O 0.61 0.68 0.50 0.66 0.65

ACC↑
Ours O 0.78 0.77 0.79 0.79 0.85

MRCNN [15] 0.22 0.23 0.44 0.19 0.37

SiamMask [225] 0.19 0.29 0.46 0.23 0.40

TSP [222] 𝑘800 O 0.03 0.04 0.05 0.02 0.03UE↓
Ours O 0.04 0.03 0.01 0.03 0.03

MRCNN [15] 0.65 0.65 0.50 0.59 0.62

SiamMask [225] 0.69 0.72 0.64 0.69 0.64

TSP [222] 𝑘800 O 0.59 0.66 0.48 0.64 0.63

J↑
Ours O 0.69 0.68 0.66 0.64 0.77

MRCNN [15] 0.64 0.70 0.56 0.54 0.63

SiamMask [225] 0.70 0.72 0.63 0.62 0.58

TSP [222] 𝑘800 O 0.56 0.64 0.54 0.61 0.66

F↑
Ours O 0.71 0.69 0.68 0.60 0.72

TSP [222] 𝑘800 O 0.36 0.49 0.20 0.41 0.39

TEX↑
Ours O 0.87 0.94 0.75 0.81 0.90

no change in UE. As larger temporal smoothing is applied, fine spatial structures are lost and cannot be

recovered.

The compactness of the tube, determined by 𝛼, see Eq. 6.4, does not play a significant role in the segmentation

performance. It rather influences the qualitative appearance of the generated tubes; in most instances of the

videos there is enough contrast in appearance or optical flow of the salient object. Changes w.r.t. 𝛽, on the

other hand, do have a notable impact; larger values correspond to increasing ACC and decreasing TEX, as the

generated tubes incorporate more optical flow information which can cause a rupture in a motion tube; e.g. a

back and forth motion is split into two tubes (forward - backward) based on the flow.

𝑘, which is responsible for the number of generated tubes, is more sensitive to change: As more tubes are used

to represent the object, they can more closely model spatio-temporal structures, which leads to increasing

ACC. This in turn means that smaller, higher frequency structures are modeled which are more likely to

disappear over time again, leading to the observed decreasing TEX.

We observe a very constant and low UE. This is, as previously mentioned, inherent to our approach as it

tends to select spatio-temporal tubes within object contours, rarely incorporating tubes that exceed object

boundaries.

The class variation, Fig. 6.7 bottom row, shows expected results: more compact object classes tend to have a

higher ACC because it is easier to approximate compact blobs than classes with deformable parts, such as

humans and animals. These results are in line with our expectations towards a well-behaved spatio-temporally

scalable representation which clearly shows the blob-like structures at coarse scales, with finer scales allowing

for a more detailed, albeit shorter lived object part representation.

Object Parts - Dataset

The major benefit of our method is the automatic decomposition into object parts. To evaluate our claim

that the decomposition indeed corresponds to meaningful parts, we extend DAVIS2016 with per-frame,

object part annotations. The average number of components per object in our dataset is M= 7.15. We name
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Figure 6.7: Parameter ablation: the top graphs show the ablation w.r.t. the individual parameter, whereas the bottom graphs show the

sensitivity of the parameters w.r.t. all classes in DAVIS. 𝜎 and 𝜏, parameters responsible for the scale at which features are extracted

show a decrease in performance once a certain threshold is crossed at which objects are represented at too coarse scales, which tends to

decrease the segmentation accuracy.

this new dataset DAVIS Parts. To our knowledge this is the first dataset providing pixel precision object

part segmentation in video. Some example annotations for multiple frames are shown in Fig. 6.8b, and the

annotated first frames of each video sequence are shown in Fig. 6.8a.

Object Parts - Evaluation In principle, we want to evaluate the Jand Fmeasures w.r.t. each individual part

in the ground truth labels. To enable a fair comparison between the different methods, slight modifications to

these measures are required. For each ground truth label we first need to determine which tubes model it.

This is done by selecting those tubes that have a significant intersection with the ground truth tube (we set

this significance to 30% overlap in our experiments, with this threshold being insensitive to change). This

tube selection allows us to compute Jand Fmeasures, which we additionally normalize by the number

of tubes modeling each particular part. This way we can meaningfully compare approaches which create

different numbers of tubes. This score per part is averaged over all parts in the ground truth. We name these

two modified measures J𝑃 and F𝑃 .

Table 6.3: Baseline results on our dataset, no other approach has yet tackled the decomposition of arbitrary objects into their meaningful

parts. The optimal results would yield J𝑃=1, F𝑃=1, C𝑃=0.

Method J𝑃 ↑ F𝑃 ↑ C𝑃 ↓ M

MRCNN [15] 0.05 0.20 — —

SiamMask [225] 0.02 0.17 — —

SLICO [230] O 0.04 0.18 0.57 16.2

𝑘100 O 0.05 0.20 0.29 5.3

TSP [222]

𝑘800 O 0.06 0.16 0.49 78.8

Ours O 0.16 0.24 0.21 3.7
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(a) First frame of very sequence (b) Samples from sequences

Figure 6.8: All first frame annotations for each sequence from DAVIS, showing the decomposition into its parts.

Figure 6.9: Qualitative comparison of part segmentation results, showing three stills from two videos, each with a crop of the reference

frame, ground truth, and the result of our method.

Additionally, we introduce a measure for label inconsistency, C𝑃 . Note how in Fig. 6.9 (left), the dress is

modeled by two tubes (light- and dark green). While this results in lower J𝑃 and F𝑃 values, we want to

quantify the fact that the light- and dark green tubes model a single ground truth object part, throughout the

whole video sequence, i.e. the dress always consists of the same tubes. C𝑃 is calculated by accumulating the

absolute deviation from the average distribution of labels at each frame. This score is furthermore normalized

by the number of frames. To account for changes in the area of each ground truth label over time, the changes

of distribution are measured w.r.t. the percentage of the area of a given label in each frame.

The results of our part based evaluation are shown in Table 6.3. STVIs outperform all competing approaches,

most notably w.r.t. the Jaccard index J. This performance is especially noteworthy considering that the object

segmentation experiments, performed in Section 6.4 showed a much narrower performance gap between

the methods. Normalizing the scores by the number of generated tubes is vital to compare the methods in

a meaningful way. We therefore also list M, the average number of tubes in Table 6.3. We can see that our

method produces the lowest Mof 3.7 tubes per video, whereas TSP 𝑘800 produces the most tubes - 78.8. This

leads to the observation that large M tend to incur a high label inconsistency, C𝑃 . This is also in line with the

observed results in the following object part ablation study.

Object Parts - Ablation Ablation experiments that measure performance of object part segmentation,

Fig. 6.11, are performed in the in the same manner, and in the same parameter ranges as those for segmentation

performance.

We observe very gradual changes to J𝑃 , and F𝑃 , across all varied parameters, similar to the ablation results

w.r.t. segmentation performance. Changes to C𝑃 are more sensitive, especially those w.r.t. 𝑘. This stems from

the fact that increasing the number of generated tubes results in tubes that are more likely to be less stable

over time, in a similar fashion to TSPs. We conclude that our proposed method is able to achieve a balance

between whole object, and object part segmentation, as it shows to be robust in both areas.
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Figure 6.10: Qualitative comparison of part segmentation results. The top row shows three stills from different videos, each with the

reference frame, ground truth, and the result of our method. The bottom row shows the results of different approaches, where the

improved temporal consistency and object part detection of our method is evident.
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Figure 6.11: Ablation study results for object parts. We observe similar behaviour as in the object segmentation ablation study, where

large 𝜎, 𝜏 decrease the performance, whereas 𝛼, 𝛽 are more stable, with large 𝛽 only incurring larger label inconsistency, C𝑃 . Interestingly,

𝑘 does not effect J𝑃 ,F𝑃 , as drastically as shown in the object segmentation ablation study.

Table 6.4: Our approach offers a spatially and temporally scalable method for extracting a decomposable object representation unlike

monolithic approaches that yield segmentation masks, or more traditional video representations that do not focus on salient objects.

Furthermore, no existing object representation offers a temporal scale which supports the creation of spatio-temporal tubes at certain

frequencies.

Variable Scale

Method Object Repre-

sentation

Temporally

Consistent

Decomposable Spatially Temporally

MRCNN [15] ✓ ✗ ✗ ✗ ✗
SiamMask [225] ✓ ✓ ✗ ✗ ✗
SLICO [230] ✗ ✓ ✓ ✗ ✗
TSP [222] ✗ ✓ ✓ ✓ ✗
Ours ✓ ✓ ✓ ✓ ✓

6.5 Conclusion

A qualitative comparison of our results in both segmentation performance and part based segmentation is

shown in Fig. 6.10. We can see that both instance segmentation networks tend to yield masks that are slightly

too large, blob-like, do not have crisp object borders, and do not provide object parts. In contrast, our approach

yields natural looking object boundaries, and a separation into meaningful parts, where “meaningfulness” is

context dependent and established through delineation in appearance and/or motion. Table 6.4 summarizes

key properties of all tested approaches.

We have presented a general method to decompose objects into meaningful spatio-temporal parts using

relatively simple features. Our method bridges the gap between bottom-up processes used to build spatio-

temporally consistent tubes, and video object segmentation networks that yield instance segmentation masks.

This novel object representation at different spatio-temporal scales, unlike other approaches, yields temporally
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coherent object components delineated by motion and/or appearance. We have evaluated our approach

on a common Video Object Segmentation dataset where we achieve competitive results. We furthermore

have extended this benchmark with high-quality, pixel level annotated individual object parts, where we

set a strong baseline with our approach. We hope that our work of unsupervised detection of object parts

in combination with the dataset will inspire development of new methods that are able to automatically

detect coherent object parts. In general, our part-based decomposition can enable interesting applications in

the realm of reasoning about objects, their interactions, or representations tailored to specific tasks, such as

feature extraction from spatio-temporal tubes for action recognition and action localization tasks.
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7.1 Considerations

With the widespread adoption of AI and Machine Learning models, ethical considerations become critical.

These models are integrated into a diverse array of applications, ranging from self-driving cars to medical

diagnostics. More significantly, they are already becoming embedded into everyday tools such as smartphones,

laptops and other computing devices, affecting people in various situations and gradually influencing human

behavior as new technologies often do. Therefore, it is crucial to address the ethical implications thoroughly

to ensure responsible development and deployment of such tools.

Biases in Data One of the most prominent ethical concerns is the potential for biases in the data used to train

AI models. Bias can be introduced at multiple stages, including data collection, labeling, and preprocessing.

For instance, if the data collection process favors a particular demographic, the resulting model may exhibit

biased behavior. Similarly, biases can emerge during data labeling if the labelers have unconscious prejudices

or if the labeling guidelines are flawed. Preprocessing techniques can also inadvertently introduce bias by

emphasizing certain patterns over others. Since AI models learn from the data provided to them, these biases

can become ingrained, leading to unfair or discriminatory outcomes. Addressing these biases is essential

to develop fair and trustworthy AI systems. This is particularly well documented for the current state of

Generative models such as Midjourney [245]: “In the case of Midjourney, [decisions are made] by a handful of
esoteric nerds, and by a 65-year old mechanical engineer living in Southeastern Wisconsin.” verbatim from [246].

Explainability & Regulatory Concerns The explainability of AI models is another critical concern,

particularly in high-stakes applications. For example, in the context of self-driving cars, it is crucial to

understand the reasoning behind the car’s decisions to ensure safety and accountability. Similarly, in medical

diagnostics, healthcare professionals and patients need to comprehend the rationale behind decisions to

trust and validate the diagnosis. Transparency in AI decision-making processes is not only important for

regulatory compliance but also for user trust and acceptance. Users should be able to understand why a

model made a particular decision to feel confident in its reliability and fairness. A lot of work has been done

in this area, and the field of Explainable AI (XAI) is rapidly evolving to address these concerns.

Privacy Concerns The data used to train AI models can often include sensitive information, raising

significant privacy concerns. This data, if not handled correctly, can potentially identify individuals, leading

to privacy violations. Ensuring that data is anonymized before being used for training is a critical step to

protect individual privacy. One of the contributions of this thesis is the development of privacy-preserving

techniques for videos. These techniques allow for the creation of videos that are still useful for action

recognition but obfuscated to remove sensitive attributes. This approach demonstrates how privacy can be

safeguarded while maintaining the utility of the data for AI applications. It remains to be seen if such a

method is scalable or if other solutions will prove superior.
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7.2 Directions for Future Research

The future of action recognition and video understanding looks promising. Many tasks previously considered

difficult and computationally expensive are now within reach due to the rapid advancements in AI and

deep learning. The development of more efficient models, training techniques and other related knowledge,

has enabled the processing of large-scale video data with improved accuracy and speed. These models

can capture complex spatio-temporal patterns in videos, leading to better action recognition performance.

The integration of these models with privacy-preserving techniques can further enhance their utility in

real-world applications. As these models become more sophisticated, they will be able to handle a wider

range of tasks. This necessitates understanding the decision making process of these models. Explainability

and interpretability are crucial aspects of AI systems that need to be further explored. Even if the models

are accurate, if their decisions remain opaque they may not be trusted or accepted by users. Even more

so, debugging and understanding the limitations of such opaque models can then only be done through

individual failure cases, and is difficult to associate entire failure classes with the model’s decision making

process.

I therefore believe that endeavors which focus on modularization are crucial because they enable debugging

of individual components of the model, inspecting the decision making process of the model as a whole.

This is particularly important in the context of safety-critical applications, where the consequences of model

failure can be severe.

In more concrete terms, I believe that our introduced Appearance Free Data represents a minimal working

example of a dataset that can be used to inspect and debug the temporal reasoning of a model. The dataset is

simple enough to be understood by humans, and requires reasoning over varying temporal lengths, as well

as the ability to create dense point estimates from sparse spatial data.
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A.1 Appendix to Chapter 2

Additional Plots of Decision Boundaries in 3D

Chapter 2, Section 2 describes the decision boundaries of a toy classification problem in 3D. The decision

boundary is shown in Fig. A.1 and Fig. A.2. In the case of this small networks the weights can also be directly

interpreted as a transformation matrix that maps ℝ2 → ℝ3
. As such we can visualize the activation of each

neuron as a plane in 3D (with an applied ReLU non-linearity).
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Figure A.1: Appendix to Fig. 2.18. The 2D and 3D visualization of the decision boundaries is shown. We can see how the hidden layer

neurons that are each able to separate the input data into a flat region and a region with a slope, can be combined such that a decision

boundary that appears to be a square is formed.
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Figure A.2: The decision boundary of the toy classification problem in 3D. The decision boundary is a hyperplane that separates the two

classes.
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A.2 Appendix to Chapter 4

Additional Behavioural Results of Appearance Free Action Videos

Chapter 4, Section 4.3 describes the performance and the results gathered on AFD5 data with human

participants; there, we presented the aggregation and summary of all datapoints. Individual anonymized

participant data shows that performance across all participants is similar, see Fig. A.3 (bottom right). From

the timing plots (top left), we can see that participants’ time-to-choose (ttc) decreases from the train to the test

set, indicating that the ‘training’ is beneficial even for humans. The ttc per user, Fig. A.3 (bottom left), shows

that 3 users in particular show more hesitation / higher ttc for samples that are finally classified incorrectly.

An increase in ttc for wrongly classified samples is seen across all classes and all participants (top right). The

questionnaire every participant of the evaluation was required to fill out is shown in Fig. A.4.
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Figure A.3: Additional results of the user study on AFD videos. The figure shows a detailed breakdown of the results obtained from the

10 participants.
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I have a known colour vision deficiency

 YES   NO YES   NO

I am short sighted

 YES   NO YES   NO

I own prescription glasses

 YES   NO  NO

I am currently wearing my glasses or 
contact lenses

 YES   NO  NO

I can see images on the monitor in front 
of me sharply

 YES   NO  NO

1 2 3 4 5

My familiarity with computer vision on a 
scale from 1 (no knowledge) to 5 (expert)

1 2 3 4 5

My familiarity with action recognition on a 
scale from 1 (no knowledge) to 5 (expert)

1 2 3 4 5

JumpingJack

1 2 3 4 5

Lunges

1 2 3 4 5

PullUps

1 2 3 4 5

PushUps

1 2 3 4 5

Swing

Perceived difficulty of recognizing each action class from Appearance Free Videos. 

easy difficult

Additional Remarks? 
Let me know here:

No knowledge expert

No knowledge expert

Figure A.4: Template questionnaire that was filled out by every participant.
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Figure A.5: Qualitative Examples of Naive Baseline Obfuscation Methods. These results augment those in main submission Figure 5.6,

which provided similar examples for state-of-the-art methods. Samples top-to-bottom are from IPN, KTH and SBU.

A.3 Appendix to Chapter 5

Implementation details

Motion consistent noise For the creation of motion consistent noise, we follow [217] that uses RAFT [70]

for optical flow estimation and nearest neighbor interpolation during warping. We also highlight that using

noise that is adjusted to the dataset mean, main submission (5.3), is important, as other initializations reduce

classification performance.

Matcher - queries, keys or values? For the template matcher, main submission Figure 5.2b, note that we use

the keys of the vision transformer. This choice follows related work, e.g. [213, 214]; however, in our preliminary

experiments we did not find large differences in using either values or queries, rather than keys.

Additional training details

For data augmentation: Videos are randomly resized to introduce scale variation and center cropped to

224 × 224 pixels. Horizontal flip augmentations are used for SBU and KTH, but not in IPN as the direction

of the motion determines the class for some gestures. Colour and temporal jitter are applied, and input

sequences are padded with the last frame in case the sequence is not long enough to fit the required clip

length of a network. For two-stream approaches, both streams use the same spatial crops as the source video.

All spatial augmentations also are applied to privacy networks.

Note that while the action and privacy recognition algorithms are trained on the original datasets used for

evaluation [215, 216, 218], they are not trained on our obfuscated videos. In comparison, alternative compared

state-of-the-art approaches do train recognition algorithms on their processed videos [189, 200, 205].
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Figure A.6: Mean Average Error Between the Average Template Saliency for Each Dataset. Values plotted so that brighter values indicate

that two templates are more similar to each other. The constructed matrices are diagonally symmetric by definition, (A.2).

Additional empirical evaluation

Naive baselines To get a better understanding of the naive baselines, we show samples from each of the

three different datasets with all of the naive baseline obfuscation methods in Figure A.5. As noted in the

main submission, for the case of mask obfuscation the masking is performed by using the mean of the region

covered by the mask.

In the main paper, we used the mean of the region in the original image covered by the mask to fill the region.

As a variation, we also considered using black for the masked region. Use of the mean value, rather than

black, improved the action recognition results on all three datasets IPN +3.2% points, KTH +1.3% points, and

SBU +2.4% points; however, the differences on privacy attributes were small across all datasets: IPN +0.6%

points, KTH −0.3% points, and SBU −0.2% points. (We use green and red to indicate desired vs. undesired

changes, respectively.)

Ablation over 𝑓𝜆 In the main submission, we introduced 𝑓𝜆, (5.6), as a way to rank multiple obfuscation

methods by combining the two metrics of concern, i.e. action recognition and privacy preservation, into

a single value. Main submission Figure 5.7 showed the ranking and performance of obfuscation methods

based on the importance weighting between action recognition and privacy preservation. The individual

dataset ablations show that our method performs best across all datasets, and not just on average as shown in

the main submission.

Overlap of individual saliency maps As discussed in the main submission, the selection of the privacy

templates is dependent on the task and the videos in the dataset, e.g. there is no need to obscure lower body

features for cases where only the upper body is visible in the video (IPN) and seeking to obscure detailed

facial features when they are not distinguishable due to viewing at a great distance (KTH) also is not merited.

Here, we quantify the similarity of selected templates. One way to do this would be to measure the Euclidean

distance of the descriptors, but that does not reveal how the obfuscation actually appears in a given dataset.

Therefore, to measure the similarity between the templates on a dataset level, we compare the saliency maps

directly.

In particular, we compute the average saliency map for each template, 𝜏𝑘 in the template library, T, per

dataset, according to

𝑆̄𝜏𝑘 (p) =
1

𝑛

𝑛∑
𝑖=1

𝑆𝑖(p) ∀𝜏𝑘 ∈ T, (A.1)

where p = (𝑥, 𝑦) indexes pixels, 𝑖 indexes saliency maps and 𝑛 is the number of images in the dataset. (Main

submission (5.2) provides the definition of individual salience maps.) These averages allow us to compute

the mean absolute error between the salience of all template pairs, 𝜏𝑖 and 𝜏𝑗 , as
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𝑣𝑖 , 𝑗 =
∑

p
|𝑆̄𝜏𝑖 (p) − 𝑆̄𝜏𝑗 (p)|, (A.2)

with p ranging over all pixels in the average saliency maps.

Figure A.6 shows the values, 𝑣𝑖 , 𝑗 , plotted so that greater similarity is visualized as brighter intensity.

From these plots, a number of observations can be made. First, it is seen that for all datasets the largest

values appear along the diagonal, as templates should be most similar to themselves, and our similarity

plots capture that property. Second, there is a tendency for templates with close spatial proximity to yield

more similar saliency maps compared to those that are more distant. For example, templates for fine facial

features, “eyes, lips, cheek”, tend to yield saliency maps more similar to each other than to more distant body

parts, “torso, arm, hand”, and vice versa. Third, there is an interaction between spatial support and template

similarity: If there is very little spatial support for a template, e.g. fine facial features on KTH, then it results

in relatively low similarity scores, as there is too little data to capture similarities.
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A.4 Publications

First Authorships

I published the following papers in peer-reviewed conferences as a first author during my PhD:

Selective, Interpretable, and Motion Consistent Privacy Attribute Obfuscation for Action Recognition.
[247]
[CVPR’24] Conference on Computer Vision and Pattern Recognition. 2024.

Filip Ilic, Thomas Pock, He Zhao, and Richard P. Wildes.

Is Appearance Free Action Recognition Possible? [217]
[ECCV’22] European Conference on Computer Vision. 2022.

Filip Ilic, Thomas Pock, and Richard P. Wildes.

A Study on Robust Feature Representations for Grain Density Estimates in Austenitic Steel. [248]
[OAGM’21] 44th OAGM Workshop 2021: Computer Vision and Pattern Analysis Across Domains. 2021.

Filip Ilic, Marc Masana, Lea Bogensperger, Harald Ganster, and Thomas Pock.

Representing Objects in Video as Space-Time Volumes by Combining Top-Down and Bottom-Up
Processes. [249]
[WACV’20] Winter Conference on Applications of Computer Vision. 2020.

Filip Ilic, and Axel Pinz.

Co-Authorships

I also contributed to the following papers as a co-author:

Object Motion Representation in the Macaque Ventral Stream - a Gateway to Understanding the Brain’s
Intuitive Physics Engine. [250]
[-] Under Submission.2024

Ramezanpour Hamidreza, Filip Ilic, Richard Wildes, and Kohitĳ Kar.

Score-Based Generative Models for Medical Image Segmentation using Signed Distance Functions. [251]
[GCPR’23] German Conference on Pattern Recognition. 2023.

Lea Bogensperger, Dominik Narnhofer, Filip Ilic, and Thomas Pock.

Lightweight Video Denoising using Aggregated Shifted Window Attention. [252]
[WACV’23] Winter Conference on Applications of Computer Vision. 2023.

Lydia Lindner, Alexander Effland, Filip Ilic, Thomas Pock, and Erich Kobler.

On the Influence of Beta Cell Granule Counting for Classification in Type 1 Diabetes. [253]
[OAGM’21] 44th OAGM Workshop 2021: Computer Vision and Pattern Analysis Across Domains. 2021.

Lea Bogensperger, Marc Masana, Filip Ilic, Harald Ganster, and Thomas Pock.
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A.5 Code Repositories

As part of this thesis, several code repositories were created to facilitate the reproducibility of the results. The

code is written in Python and uses the Pytorch Deep Learning Framework [50]. The following repositories

are available:

Is Appearance Free Action Recognition Possible?

The repository contains code to create the synthetic appearance free dataset on the basis of UCF101. It

additionally allows the creating of warping arbitrary noise patterns with optical flow extracted from

arbitrary input video. The project page has animated videos of the appearance free data, which is crucial for

understanding the importance of this research. The code contains the hyper-parameters of all the networks,

data augmentation, and training scripts necessary to reproduce our results.

It furthermore contains the user study UI code that was used to perform the psychophysical user study,

in which participants were tasked to classify the actions in the appearance free dataset. All visualization

and analysis scripts that were used to create the figures in the paper (and more) are also included in the

repository.

▶ Project Page: https://f-ilic.github.io/AppearanceFreeActionRecognition.

▶ Code Repository: https://github.com/f-ilic/AppearanceFreeActionRecognition

▶ Open Access Paper:https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136640154.pdf

Selective, Interpretable, and Motion Consistent Privacy Attribute Obfuscation for
Action Recognition

The repository contains code to use a pretrained DINO Vision Transformer, in combination with a GUI

application to select templates that ought to be obfuscated for a given input video. It furthermore also

includes scripts and tools to visualize the attention of the ViT. Naive baselines and other methods to which

comparisons are drawn are implemented or referenced in the repository.

▶ Project Page: https://f-ilic.github.io/SelectivePrivacyPreservation

▶ Code Repository: https://github.com/f-ilic/SelectivePrivacyPreservation

▶ Open Access Paper: https://openaccess.thecvf.com/content/CVPR2024/papers/Ilic_Selective_

Interpretable_and_Motion_Consistent_Privacy_Attribute_Obfuscation_for_Action_CVPR_2024_

paper.pdf

Representing Objects in Video as Space-Time Volumes by Combining Top-Down and
Bottom-Up Processes

As part of the algorithm evaluation we added annotations to the DAVIS2016 [241] dataset. It is available to

download on the project page.

▶ Project Page: https://f-ilic.github.io/STVI

▶ Open Access Paper:https://openaccess.thecvf.com/content_WACV_2020/papers/Ilic_Representing_

Objects_in_Video_as_Space-Time_Volumes_by_Combining_Top-Down_WACV_2020_paper.pdf

https://f-ilic.github.io/AppearanceFreeActionRecognition
https://github.com/f-ilic/AppearanceFreeActionRecognition
https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136640154.pdf
https://f-ilic.github.io/SelectivePrivacyPreservation
https://github.com/f-ilic/SelectivePrivacyPreservation
https://openaccess.thecvf.com/content/CVPR2024/papers/Ilic_Selective_Interpretable_and_Motion_Consistent_Privacy_Attribute_Obfuscation_for_Action_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Ilic_Selective_Interpretable_and_Motion_Consistent_Privacy_Attribute_Obfuscation_for_Action_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Ilic_Selective_Interpretable_and_Motion_Consistent_Privacy_Attribute_Obfuscation_for_Action_CVPR_2024_paper.pdf
https://f-ilic.github.io/STVI
https://openaccess.thecvf.com/content_WACV_2020/papers/Ilic_Representing_Objects_in_Video_as_Space-Time_Volumes_by_Combining_Top-Down_WACV_2020_paper.pdf
https://openaccess.thecvf.com/content_WACV_2020/papers/Ilic_Representing_Objects_in_Video_as_Space-Time_Volumes_by_Combining_Top-Down_WACV_2020_paper.pdf
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